Jump to Block:
(About)
01
02
03
04
05
06
07
08
09
10
11
12
(Assessments)
Matrix and Vector operations Cheat Sheet
Basic operations
Math |
Comments |
\((\mathbf{A}\mathbf{B})^T= \mathbf{B}^T\mathbf{A}^T\) |
Transposing reverses order |
\(\mathbf{a}^T\mathbf{b} = constant = \mathbf{b}^T\mathbf{a}\) |
For vectors, the result is a scalar, so order can be changed. |
\((\mathbf{A} + \mathbf{B}) \mathbf{C}= \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}\) |
Multiplication is distributive |
\((\mathbf{a} + \mathbf{b})^T \mathbf{C} = \mathbf{a}^T \mathbf{C} + \mathbf{b}^T \mathbf{C}\) |
vector and transpose operations are distributive |
\((\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}\) |
Inverse reverses order (when individual inverses exist) |
\((\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1}) ^T\) |
Inverse and transposes commute |
Determinant, Rank, Trace
Math |
Comments |
\(\mathrm{det}(\mathbf{A})= |\mathbf{A}|\) |
Definition of determinant |
\(|\mathbf{A}\mathbf{B}| = |\mathbf{A}| |\mathbf{B}|\) |
Determinant commutes with product |
\(\mathrm{rank}(\mathbf{A})= \mathrm{rank}(\mathbf{A}^T\mathbf{A}) = \mathrm{rank}(\mathbf{A}\mathbf{A}^T)\) |
Rank of non-square matrices |
\(\mathrm{Tr}(\mathbf{A})= \sum_{i=1}^d \lambda_d\) |
Trace is sum of eigenvalues |
\(\mathrm{Tr}(\mathbf{A}\mathbf{B}\mathbf{C})= \mathrm{Tr}(\mathbf{C}\mathbf{A}\mathbf{B})\) |
Trace is cyclic (where defined) |
Matrix derivatives
Using the convention that \(\nabla_x f(\mathbf{X}) = \frac{df(\mathbf{X})}{d\mathbf{x}}\):
|
Scalar |
|
|
Vector |
(Description) |
\(f(x)\) |
\(\to\) |
\(\frac{df}{dx}\) |
\(f(x)\) |
\(\to\) |
\(\frac{df}{d\mathbf{x}}\) |
|
|
|
|
|
Derivative of linear function: |
\(bx\) |
|
\(b\) |
\(\mathbf{x}^T\mathbf{B}\) |
|
\(\mathbf{B}\) |
|
|
|
|
|
Derivative of quadratic function: |
\(bx^2\) |
|
\(2bx\) |
\(\mathbf{x}^T\mathbf{B}\mathbf{x}\) |
|
\(\mathbf{B}\mathbf{x} + \mathbf{B}^T\mathbf{x}\) |
|
|
|
|
|
Product rule for vector/matrix valued functions: |
\(g(x)h(x)\) |
|
\(g^\prime h + g h^\prime\) |
\(\mathbf{g}(\mathbf{x})\mathbf{h}(\mathbf{x})\) |
|
\(\nabla_x (\mathbf{g}(\mathbf{x})) \mathbf{h}(\mathbf{x}) + \mathbf{g}(\mathbf{x}) \nabla_x (\mathbf{h}(\mathbf{x}))\) |
Further Reading