Introduction to Parallelism (Part 2, Vectorisation, Mapping and Reducing)

Daniel Lawson — University of Bristol

Lecture 10.1.2 (v1.0.2)

Signposting

► Block 10 on **parallel algorithms** is paired with Block 11 on **parallel infrastructure**.

- ▶ Block 08 on **Algorithms** is the also highly relevant.
- **F** Specific content includes **complexity**.
- \blacktriangleright The block is split into Lecture 10.1 (Introduction) and a Workshop 10.2.
- \blacktriangleright The lecture is split into two parts
- \blacktriangleright This is 10.1.2, covering:
	- \blacktriangleright Vectorisation
	- \blacktriangleright Reduce and accumulate
	- \blacktriangleright Map, and Map-Reduce

Vectorisation

 \blacktriangleright Vectorised code is parallelised code.

- \blacktriangleright Each operation for vectorised code is computable independently
- ▶ The same operation is applied to each element (with different data)
- ► CPU optimisation is possible and may be straightforward
- \blacktriangleright GPU acceleration is possible
- **I** Vectorisations are always one dimensional representations

 \blacktriangleright A set of standardized elementwise computations is possible:

- \blacktriangleright addition, subtraction, multiplication, division
- \blacktriangleright other operations are possible, this becomes architecture dependent

Vectorisation of K-dimensional objects

 \blacktriangleright Matrices can be represented by standardized vectorisation procedures

$$
\blacktriangleright A = \left[\begin{array}{ccc} a & b & c \\ d & e & f \end{array} \right]
$$

- **Row major** order: $\text{vec}(A) = (a, b, c, d, e, f)$
- \blacktriangleright **Column major** order: $\text{vec}(A) = (a, d, b, e, c, f)$
- \blacktriangleright Matrix multiplication:
	- \blacktriangleright Is just sums of the correct components of the vectorised matrices
	- \blacktriangleright Choice of row vs column major order affects efficiency!

\blacktriangleright Parallelization:

- ▶ On a shared memory machine, the computations are distributed
- **Otherwise a memory distribution problem**
- Efficient implementations for many common computations

Vectorisation and time complexity

- \blacktriangleright Assuming no parallelization:
- \blacktriangleright A for loop with *N* iterations is $O(N)$
- \blacktriangleright A vectorisation with *N* elements is $O(N)$
- \blacktriangleright But the vectorised code may still be orders of magnitude faster:
	- It often can be pushed into low-level code $(C$ backend)
	- It can exploit CPU memory architecture: **caching** the correct content to avoid overhead
	- It can exploit CPU compute architecture: **multiple registers** in parallel

 \blacktriangleright Vectorisation also leads directly into parallel implementations:

- \blacktriangleright It emphasises dependencies,
- \blacktriangleright It encourages reordering of loops which can reduce time complexity.

Distributed computation

 \triangleright On a shared memory system, parallel computation is trivial:

- 1. **Initialise** a parallelisable step, i.e.
	- \blacktriangleright enumerate the computations to be performed.
- 2. **Assign** them to worker threads:
	- \blacktriangleright either evenly if compute resource is guaranteed and tasks take equal time, e.g. on a GPU,
	- ▶ or as a **queue**.
- 3. **Action** the computation,
- 4. **Block**, i.e. wait for all computations to complete.
- \triangleright On completion, the results are in the same place in memory as if the computation was performed in series.

Accumulate/Reduce

 \blacktriangleright Suppose that you wanted to compute the cumulative sum. Then the elements become **dependent** and you cannot use a purely independent vectorization.

 \blacktriangleright How can we combine results from N parallel computations?

- **E** accumulate is a vectorisation of any (binary, i.e. pairwise) (associative and commutative) function returning a single value
- \blacktriangleright It may or may not provide access to intermediate function evaluations
- ▶ It is often called a **Reduce** operation
- \blacktriangleright It is a natively parallelisable way to view combining

Accumulate/Reduce computation graph

Computational graph properties:

- ▶ Nodes *n* internal to binary tree: $n(d) = \sum_{i=0}^{d} 2^i = 2^{d+1} 1$
- \blacktriangleright Depth *d*: $d(n) = \Theta(\log(n))$
- \blacktriangleright Algorithm properties:
	- ► Maximum compute could use $2^{d-1} = 2^{\log_2(n)} = n/2$ cores,
	- **Parallel maximum speedup:** $\Theta(\log(n))$ due to depth,
	- \blacktriangleright Simple blocking queue would reserve $n \log(n)/2$ processes,
	- **Parallel efficiency cost:** $E = \Theta(n/(n \log(n)))$ if all memory operations are in place.

Map/Reduce parallel framework

For general purpose computation, the concepts of mapping and **reducing** enable efficient parallel code.

If This uses the concept of a **key-value** tuple.

- ▶ The data are **mapped**: each **value** is assigned one or more **keys**
- ▶ Data associated with each key is passed to a reducer
- In The **reducer** completes the computation
- \blacktriangleright More precisely,
	- \triangleright **Map**: $M(k_0, v_0)$ → $((k_1, v_1), \cdots, (k_K, v_K))$ is a function taking an input key/value pair to a list of output key/value pairs
	- ▶ **Reduce**: $R(k, (v_1, \cdots, v_R))$ → (k, v) is a function taking an input key and list of values, to a single (list-valued) value.

Map/Reduce vector averaging example

 \blacktriangleright Let X be a vector of length N.

 \blacktriangleright **Map**: $(k_0, v) \to (k, \{w = 1, v = v\})$

▶ Assign each element a key $k \in [1, \cdots, K]$,

 \blacktriangleright Assign a weight in the value,

▶ The key acts as a fold of data.

 \blacktriangleright Here, we are using the key as an arbitrary index, but this can be exploited.

 \blacktriangleright **Reduce:** $(k, \{v\}) \rightarrow (k, v)$

 \blacktriangleright Count within each fold:

$$
\blacktriangleright \text{ Return } (k, v) = (k, \{w = \sum_{k=1}^{K} v_w, v = \sum_{k=1}^{K} v_v \})
$$

Postprocess: Return mean $=$ $\frac{\sum_{k=1}^{K}}{\sum_{k=1}^{K}}$ $\frac{v_k}{K}$ $\frac{1}{K}$ $\frac{v_{k,v}}{v_{k,w}}$

Map/Reduce analysis

- **EXTERNAL Assume within-memory implementation**
- \blacktriangleright Use $p \leq K$ parallel threads (assume an integer multiple for simplicity...)
- **I** The map stage is entirely parallel for cost $\Theta(\lceil n/p \rceil)$
- \blacktriangleright There is a **sort** stage which would be handled by a set of K lists
	- \blacktriangleright Independently parallelised construction of the K lists for cost $\Theta(\lceil n/p \rceil)$
	- \blacktriangleright In memory concatenation cost is negligible
- **The reduce** stage is parallel across $\Theta([K\lceil n/K\rceil/p]) \approx \Theta([n/p])$ processes
- ▶ The postprocess stage is naively sequential with compute cost *K*
	- **If** Total parallel time: $T_p = \Theta(\lceil n/p \rceil + \lceil n/p \rceil + \lceil n/p \rceil + K)$
	- \blacktriangleright Total sequential time: $T_s = \Theta(n)$
	- \blacktriangleright Total efficiency loss: $T_p/T_s \sim \Theta(1 + Kp)$

Map/Reduce reducer parallelisation

Practical concerns:

 \blacktriangleright Reducers don't automatically provide parallelism: we have to ask for it

 \blacktriangleright This is because the reducer is not assumed to be commutative

 \blacktriangleright But if the keys explicitly specify the desired folds, the reduce can be parallelised

▶ In Hadoop Map/Reduce, reduction is parallelised across keys

- \blacktriangleright In python/local Map/Reduce, reduction parallelisation is manual
- ▶ We can also map the **postprocess** k-fold reduction sum. Using p_2 processes:

 \blacktriangleright Reduce the postprocess time from K to $T'_{p} = \Theta([K/p_{2}] + [K/p_{2}] + p_{2})$

- \blacktriangleright Minimized at $p_2 = \sqrt{K}$
- So we should use $K = p^2$ keys, keeping $p_2 = p$.
- **►** So we should use $\overline{R} = p^p$ keys, keeping $p^2 = p$.

► Total parallel time: $T_p = \Theta(\lceil n/p \rceil + \lceil n/p \rceil + \lceil n/p \rceil + \sqrt{p})$

Map/Reduce Matrix Example

Map/Reduce Matrix Example

$$
C = \begin{bmatrix} k & l \\ m & n \end{bmatrix} = AB = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} u & v \\ w & x \\ y & z \end{bmatrix}
$$

 \blacktriangleright C has dimension $L \times L$, A has dimension $L \times K$

$$
\blacktriangleright \text{ where } k = au + bw + cy, \text{ etc.}
$$

- I For a **one-stage** implementation, each of the **four** computations requires access to **three** elements from each array
- **I** Represent the matrices in index form: $(key, value)$ where $key = (M, i, j)$ is the position (row and column) index and records the matrix type $M \in [A, B, C]$.
- \blacktriangleright Computing (C, i, j) requires all elements of A from row *i* and all elements of *B* from row *j*
- \blacktriangleright There will be $K=3$ such elements
- \blacktriangleright Required to compute L^2 entries of C

Map/Reduce Matrix Multiplication Algorithm

- \blacktriangleright **Map**: each element is mapped independently to a list of K elements:
- \blacktriangleright Map($(M, i, j), v$):
	- \blacktriangleright ((*A, i, j*)*, v*) → ((*i, k*)*,*(*A, j, v*)) $\forall k = 1, ..., K$
	- \blacktriangleright ((*B, i, i*), *v*) → ((*k, i*), (*B, i, v*)) $\forall k = 1, ..., K$
	- \triangleright Cost: 2K for each of L^2 independent entries
- \blacktriangleright **Reduce**: each key (i, j) is received 2K times, K from A and *K* from *B*.
- \blacktriangleright Reduce((i, j) *,* (M, k, v)):
	- $\blacktriangleright v_{i,j} = \sum_{k=1}^{K} v_{(A,k,v)} v_{(B,k,v)}$
	- Return $((i, j), v_{i,j})$
	- Sost: K for each of L^2 independent entries

\triangleright Cost:

- **P** Parallel time $T_p = \Theta(\lceil L^2/p \rceil K)$
- \blacktriangleright Sequential time $T_s = \Theta(L^2K)$
- \blacktriangleright Efficiency 1
- ▶ Despite inefficient duplication of data, which fast algorithms avoid!

Map/Reduce paradigm

- \blacktriangleright Map/Reduce is an essential tool in low-effort parallelism.
- If The main computational advantage is that it is scalable: it can be parallelised across machines.
- ▶ So far we've described Map/Reduce as an **in** memory algorithm.
- In this case it naturally leads to fast analogues for a single computer:
	- ► We can imagine each **reducer key** being a memory location and the mappers are providing data fed to that location;
	- \blacktriangleright This is essentially how vectorised matrix computations are implemented efficiently.

Summary

- \blacktriangleright Vectorised code is efficiently computed
- \blacktriangleright Vectorised code is parallelisable with little effort
- \blacktriangleright Embarrassingly parallel algorithms are common
- \triangleright Map/Reduce is a powerful paradigm for non-trivial parallelism and is the heart of massively parallel data processing

Reflection

- \blacktriangleright What does vectorisation achieve and how do you exploit it?
- \blacktriangleright Why is Map/Reduce popular? Is it the "best" way to implement a parallel algorithm?
- \blacktriangleright Can you draw the computational graphs for the Map/Reduce framework?
- \blacktriangleright By the end of the course, you should:
	- \blacktriangleright Have a high level understanding for how parallelism can be exploited
	- \blacktriangleright Be able to vectorise simple loops
	- \blacktriangleright Be able to analyse simple Map/Reduce algorithms

Signposting

- \blacktriangleright In the workshop we create some vectorised algorithms and use Map/Reduce.
- **F** This is preparation for block 11 on handling parallelised data, for which the dedicated tools of **Hadoop** and **Spark** are designed.
- References:
	- ▶ Chapter 27 of Cormen et al 2010 [Introduction to Algorithms](https://github.com/mejibyte/competitive_programming/blob/master/lib/Books/Introduction.to.Algorithms.3rd.Edition.Sep.2010.pdf) covers some of these concepts.
	- \blacktriangleright [Numpy vectorisation](https://realpython.com/numpy-array-programming/)
	- \blacktriangleright [MapReduce algorithm for matrix multiplication](http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/9-parallel/matrix-mult.html)
- ▶ [Chrys Woods Parallel Python](http://chryswoods.com/parallel_python/part1.html)