
Introduction to Parallelism (Part 2, Vectorisation,
Mapping and Reducing)

Daniel Lawson — University of Bristol

Lecture 10.1.2 (v1.0.2)



Signposting

I Block 10 on parallel algorithms is paired with Block 11 on
parallel infrastructure.
I Block 08 on Algorithms is the also highly relevant.
I Specific content includes complexity.

I The block is split into Lecture 10.1 (Introduction) and a
Workshop 10.2.

I The lecture is split into two parts
I This is 10.1.2, covering:

I Vectorisation
I Reduce and accumulate
I Map, and Map-Reduce



Vectorisation

I Vectorised code is parallelised code.
I Each operation for vectorised code is computable independently
I The same operation is applied to each element (with different

data)
I CPU optimisation is possible and may be straightforward
I GPU acceleration is possible
I Vectorisations are always one dimensional representations

I A set of standardized elementwise computations is possible:
I addition, subtraction, multiplication, division
I other operations are possible, this becomes architecture

dependent



Vectorisation of K-dimensional objects

I Matrices can be represented by standardized vectorisation
procedures
I A =

[
a b c
d e f

]
I Row major order: vec(A) = (a, b, c, d, e, f)
I Column major order: vec(A) = (a, d, b, e, c, f)

I Matrix multiplication:
I Is just sums of the correct components of the vectorised

matrices
I Choice of row vs column major order affects efficiency!

I Parallelization:
I On a shared memory machine, the computations are

distributed
I Otherwise a memory distribution problem

I Efficient implementations for many common computations



Vectorisation and time complexity

I Assuming no parallelization:
I A for loop with N iterations is O(N)
I A vectorisation with N elements is O(N)
I But the vectorised code may still be orders of magnitude faster:

I It often can be pushed into low-level code (C backend)
I It can exploit CPU memory architecture: caching the correct

content to avoid overhead
I It can exploit CPU compute architecture: multiple registers in

parallel
I Vectorisation also leads directly into parallel implementations:

I It emphasises dependencies,
I It encourages reordering of loops which can reduce time

complexity.



Distributed computation

I On a shared memory system, parallel computation is trivial:

1. Initialise a parallelisable step, i.e.
I enumerate the computations to be performed.

2. Assign them to worker threads:
I either evenly if compute resource is guaranteed and tasks take

equal time, e.g. on a GPU,
I or as a queue.

3. Action the computation,
4. Block, i.e. wait for all computations to complete.
I On completion, the results are in the same place in memory as

if the computation was performed in series.



Accumulate/Reduce

I Suppose that you wanted to compute the cumulative sum.
Then the elements become dependent and you cannot use a
purely independent vectorization.

I How can we combine results from N parallel computations?
I accumulate is a vectorisation of any (binary, i.e. pairwise)

(associative and commutative) function returning a single value
I It may or may not provide access to intermediate function

evaluations
I It is often called a Reduce operation
I It is a natively parallelisable way to view combining



Accumulate/Reduce computation graph

I Computational graph properties:
I Nodes n internal to binary tree: n(d) =

∑d
i=0 2i = 2d+1 − 1

I Depth d: d(n) = Θ(log(n))
I Algorithm properties:

I Maximum compute could use 2d−1 = 2log2(n) = n/2 cores,
I Parallel maximum speedup: Θ(log(n)) due to depth,
I Simple blocking queue would reserve n log(n)/2 processes,
I Parallel efficiency cost: E = Θ(n/(n log(n))) if all memory

operations are in place.



Map/Reduce parallel framework

I For general purpose computation, the concepts of mapping
and reducing enable efficient parallel code.
I This uses the concept of a key-value tuple.

I The data are mapped: each value is assigned one or more
keys

I Data associated with each key is passed to a reducer
I The reducer completes the computation
I More precisely,

I Map: M(k0, v0)→ ((k1, v1), · · · , (kK , vK)) is a function
taking an input key/value pair to a list of output key/value pairs

I Reduce: R(k, (v1, · · · , vR))→ (k, v) is a function taking an
input key and list of values, to a single (list-valued) value.



Map/Reduce vector averaging example

I Let X be a vector of length N .
I Map: (k0, v)→ (k, {w = 1, v = v})

I Assign each element a key k ∈ [1, · · · , K],
I Assign a weight in the value,
I The key acts as a fold of data.
I Here, we are using the key as an arbitrary index, but this can be

exploited.
I Reduce: (k, {v})→ (k, v)

I Count within each fold:
I Return (k, v) = (k, {w =

∑K
k=1 vw, v =

∑K
k=1 vv})

I Postprocess: Return mean =
∑K

k=1 vk,v∑K

k=1 vk,w



Map/Reduce analysis

I Assume within-memory implementation
I Use p ≤ K parallel threads (assume an integer multiple for

simplicity. . . )
I The map stage is entirely parallel for cost Θ(dn/pe)
I There is a sort stage which would be handled by a set of K

lists
I Independently parallelised construction of the K lists for cost

Θ(dn/pe)
I In memory concatenation cost is negligible

I The reduce stage is parallel across
Θ(dKdn/Ke/pe) ≈ Θ(dn/pe) processes

I The postprocess stage is naively sequential with compute cost
K
I Total parallel time: Tp = Θ(dn/pe+ dn/pe+ dn/pe+ K)
I Total sequential time: Ts = Θ(n)
I Total efficiency loss: Tp/Ts ∼ Θ(1 + Kp)



Map/Reduce reducer parallelisation

I Practical concerns:
I Reducers don’t automatically provide parallelism: we have to

ask for it
I This is because the reducer is not assumed to be commutative
I But if the keys explicitly specify the desired folds, the reduce

can be parallelised
I In Hadoop Map/Reduce, reduction is parallelised across keys
I In python/local Map/Reduce, reduction parallelisation is manual

I We can also map the postprocess k-fold reduction sum.
Using p2 processes:
I Reduce the postprocess time from K to

T ′p = Θ(dK/p2e+ dK/p2e+ p2)
I Minimized at p2 =

√
K

I So we should use K = p2 keys, keeping p2 = p.
I Total parallel time: Tp = Θ(dn/pe+ dn/pe+ dn/pe+√p)



Map/Reduce Matrix Example



Map/Reduce Matrix Example

C =
[

k l
m n

]
= AB =

[
a b c
d e f

] u v
w x
y z


I C has dimension L× L, A has dimension L×K
I where k = au + bw + cy, etc
I For a one-stage implementation, each of the four

computations requires access to three elements from each array
I Represent the matrices in index form: (key, value) where

key = (M, i, j) is the position (row and column) index and
records the matrix type M ∈ [A, B, C].

I Computing (C, i, j) requires all elements of A from row i and
all elements of B from row j

I There will be K = 3 such elements
I Required to compute L2 entries of C



Map/Reduce Matrix Multiplication Algorithm
I Map: each element is mapped independently to a list of K

elements:
I Map((M, i, j), v) :

I ((A, i, j), v)→ ((i, k), (A, j, v)) ∀k = 1, . . . , K
I ((B, i, j), v)→ ((k, j), (B, i, v)) ∀k = 1, . . . , K
I Cost: 2K for each of L2 independent entries

I Reduce: each key (i, j) is received 2K times, K from A and
K from B.

I Reduce((i, j), (M, k, v)) :
I vi,j =

∑K
k=1 v(A,k,v)v(B,k,v)

I Return ((i, j), vi,j)
I Cost: K for each of L2 independent entries

I Cost:
I Parallel time Tp = Θ(dL2/peK)
I Sequential time Ts = Θ(L2K)
I Efficiency 1
I Despite inefficient duplication of data, which fast algorithms

avoid!



Map/Reduce paradigm

I Map/Reduce is an essential tool in low-effort parallelism.
I The main computational advantage is that it is scalable: it

can be parallelised across machines.
I So far we’ve described Map/Reduce as an in memory

algorithm.
I In this case it naturally leads to fast analogues for a single

computer:
I We can imagine each reducer key being a memory location

and the mappers are providing data fed to that location;
I This is essentially how vectorised matrix computations are

implemented efficiently.



Summary

I Vectorised code is efficiently computed
I Vectorised code is parallelisable with little effort
I Embarrassingly parallel algorithms are common
I Map/Reduce is a powerful paradigm for non-trivial parallelism

and is the heart of massively parallel data processing



Reflection

I What does vectorisation achieve and how do you exploit it?
I Why is Map/Reduce popular? Is it the “best” way to

implement a parallel algorithm?
I Can you draw the computational graphs for the Map/Reduce

framework?
I By the end of the course, you should:

I Have a high level understanding for how parallelism can be
exploited

I Be able to vectorise simple loops
I Be able to analyse simple Map/Reduce algorithms



Signposting

I In the workshop we create some vectorised algorithms and use
Map/Reduce.

I This is preparation for block 11 on handling parallelised data,
for which the dedicated tools of Hadoop and Spark are
designed.

I References:
I Chapter 27 of Cormen et al 2010 Introduction to Algorithms

covers some of these concepts.
I Numpy vectorisation
I MapReduce algorithm for matrix multiplication

I Chrys Woods Parallel Python

https://github.com/mejibyte/competitive_programming/blob/master/lib/Books/Introduction.to.Algorithms.3rd.Edition.Sep.2010.pdf
https://realpython.com/numpy-array-programming/
http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/9-parallel/matrix-mult.html
http://chryswoods.com/parallel_python/part1.html

