Practicalities of Neural Nets

Daniel Lawson — University of Bristol

Lecture 09.2 (v1.0.1)



Signposting

» This Block is split into two Lectures:
> 09.1 (this lecture) on the theory
» 09.2 on practicalities

» This is Lecture 2.



ILOs

» [LO1 Be able to access and process cyber security data into a
format suitable for mathematical reasoning

» ILO4 Be able to use high throughput computing infrastructure
and understand appropriate algorithms

» ILO5 Be able to reason about and conceptually align problems
involving real data to appropriate theoretical methods and
available methodology to correctly make inferences and
decisions



Implementations

» Implementations are best though of in two classes.
» Simple networks have a restricted architecture and can be
deployed “out of the box” as a Machine Learning tool.
» Examples include sklearn.linear _model.Perceptron, R’s

neutralnet packages, etc
» Often either shallow or very simple hidden layer structure

» Deep networks require a complex specification of architecture
and significant computational optimisation, so are very large
(and mercifully, open source) endeavours

» This is the focus here.


https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf
https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf

Depp NN Implementations

» There are two main libraries for deep neural networks:
» TensorFlow, developed by Google Brain.

»> Well documented

» Easier to use

» Industry standard
» Tensorboard visualisation is useful

» PyTorch, developed by Facebook.
» Newer, less support
» Dynamical coding paradigm: graph can remodel in the light of
the data
» Debugging is easier? As the code is compiled at runtime, like
native python


https://www.tensorflow.org/tensorboard

Using implementations

» Tensorflow is a low-level language. You can interact with it
through abstraction layers which allows very simple
implementations.

» Keras is very widely used and makes accessing TensorFlow very
casy.
» PyTorch is already conceptually a “high level” implementation.

» Keras can use various backends (implementations):

» TensorFlow

> MXNet

» Theano is a pure python library for a wide class of array
computation, not just Neural Networks. It was forked into

» Microsoft Cognitive Toolkit, but this is no longer in active
development.

» See Tensorflow or keras?



https://www.tensorflow.org
https://keras.io/why-use-keras/
https://pytorch.org/
https://keras.io/
https://www.tensorflow.org/
https://mxnet.apache.org
https://pypi.org/project/Theano/
https://github.com/pymc-devs/aesara
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://medium.com/implodinggradients/tensorflow-or-keras-which-one-should-i-learn-5dd7fa3f9ca0

Practical advice

» Explore recommendations. e.g. Practical Advice for Building
Deep Neural Networks:

> As a starting point:

>
| 2
>
>

>

» Don

Use the “adam” optimizer

Use a ReLU activation function

Remember not to use an activation function for the output layer
(except for classification, when use a sigmoid)

Add bias to every layer (shouldn’'t have to worry about this in
keras)

Whiten (normalize) your input data (we'll see this in the
workshop)

't believe me. Get other opinions, and try things yourself.


https://pcc.cs.byu.edu/2017/10/02/practical-advice-for-building-deep-neural-networks/
https://pcc.cs.byu.edu/2017/10/02/practical-advice-for-building-deep-neural-networks/

Debugging

\{

vVvyvyYVyy

Check the input data. ..
For many tasks:
» OVERFIT. “Accuracy should be essentially 100% or 99.99%".
If it isn't, the network isn't flexible enough, or learning correctly.
Change the learning rate
Decrease mini-batch size
Remove batch normalization (this exposes NA values)
Reconsider the architecture
PLOT your results! training loss by epoch is a natural plot



Workshop

P jupyter notebook
» Basic Bluecrystal usage
» All ready for the assignment?



Signposting

» The next topic is parallel algorithms, to compare with fast
single node approaches.

» By the end of the course, you should:

» Understand the tools available for neural networks
» Be able to use high-level implementations efficiently



Further reading

» Keras and PyTorch
» Tensorflow or keras?

> A performance focussed comparison: TensorFlow, PyTorch or

MXNet?
» Tensorboard
» Brilliant.org on Backpropagation
» Practical Advice for Building Deep Neural Networks



https://keras.io/why-use-keras/
https://pytorch.org/
https://medium.com/implodinggradients/tensorflow-or-keras-which-one-should-i-learn-5dd7fa3f9ca0
https://medium.com/syncedreview/tensorflow-pytorch-or-mxnet-a-comprehensive-evaluation-on-nlp-cv-tasks-with-titan-rtx-cdf816fc3935
https://medium.com/syncedreview/tensorflow-pytorch-or-mxnet-a-comprehensive-evaluation-on-nlp-cv-tasks-with-titan-rtx-cdf816fc3935
https://www.tensorflow.org/tensorboard
https://brilliant.org/wiki/backpropagation/
https://pcc.cs.byu.edu/2017/10/02/practical-advice-for-building-deep-neural-networks/

