
Practicalities of Neural Nets

Daniel Lawson — University of Bristol

Lecture 09.2 (v1.0.1)



Signposting

I This Block is split into two Lectures:
I 09.1 (this lecture) on the theory
I 09.2 on practicalities

I This is Lecture 2.



ILOs

I ILO1 Be able to access and process cyber security data into a
format suitable for mathematical reasoning

I ILO4 Be able to use high throughput computing infrastructure
and understand appropriate algorithms

I ILO5 Be able to reason about and conceptually align problems
involving real data to appropriate theoretical methods and
available methodology to correctly make inferences and
decisions



Implementations

I Implementations are best though of in two classes.
I Simple networks have a restricted architecture and can be

deployed “out of the box” as a Machine Learning tool.
I Examples include sklearn.linear_model.Perceptron, R’s

neutralnet packages, etc
I Often either shallow or very simple hidden layer structure

I Deep networks require a complex specification of architecture
and significant computational optimisation, so are very large
(and mercifully, open source) endeavours
I This is the focus here.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf
https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf


Depp NN Implementations

I There are two main libraries for deep neural networks:
I TensorFlow, developed by Google Brain.

I Well documented
I Easier to use
I Industry standard
I Tensorboard visualisation is useful

I PyTorch, developed by Facebook.
I Newer, less support
I Dynamical coding paradigm: graph can remodel in the light of

the data
I Debugging is easier? As the code is compiled at runtime, like

native python

https://www.tensorflow.org/tensorboard


Using implementations

I Tensorflow is a low-level language. You can interact with it
through abstraction layers which allows very simple
implementations.
I Keras is very widely used and makes accessing TensorFlow very

easy.
I PyTorch is already conceptually a “high level” implementation.

I Keras can use various backends (implementations):
I TensorFlow
I MXNet
I Theano is a pure python library for a wide class of array

computation, not just Neural Networks. It was forked into
Aesara. . .

I Microsoft Cognitive Toolkit, but this is no longer in active
development.

I See Tensorflow or keras?

https://www.tensorflow.org
https://keras.io/why-use-keras/
https://pytorch.org/
https://keras.io/
https://www.tensorflow.org/
https://mxnet.apache.org
https://pypi.org/project/Theano/
https://github.com/pymc-devs/aesara
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://medium.com/implodinggradients/tensorflow-or-keras-which-one-should-i-learn-5dd7fa3f9ca0


Practical advice

I Explore recommendations. e.g. Practical Advice for Building
Deep Neural Networks:

I As a starting point:
I Use the “adam” optimizer
I Use a ReLU activation function
I Remember not to use an activation function for the output layer

(except for classification, when use a sigmoid)
I Add bias to every layer (shouldn’t have to worry about this in

keras)
I Whiten (normalize) your input data (we’ll see this in the

workshop)
I Don’t believe me. Get other opinions, and try things yourself.

https://pcc.cs.byu.edu/2017/10/02/practical-advice-for-building-deep-neural-networks/
https://pcc.cs.byu.edu/2017/10/02/practical-advice-for-building-deep-neural-networks/


Debugging

I Check the input data. . .
I For many tasks:

I OVERFIT. “Accuracy should be essentially 100% or 99.99%”.
If it isn’t, the network isn’t flexible enough, or learning correctly.

I Change the learning rate
I Decrease mini-batch size
I Remove batch normalization (this exposes NA values)
I Reconsider the architecture
I PLOT your results! training loss by epoch is a natural plot



Workshop

I jupyter notebook
I Basic Bluecrystal usage
I All ready for the assignment?



Signposting

I The next topic is parallel algorithms, to compare with fast
single node approaches.

I By the end of the course, you should:
I Understand the tools available for neural networks
I Be able to use high-level implementations efficiently



Further reading

I Keras and PyTorch
I Tensorflow or keras?
I A performance focussed comparison: TensorFlow, PyTorch or

MXNet?
I Tensorboard
I Brilliant.org on Backpropagation
I Practical Advice for Building Deep Neural Networks

https://keras.io/why-use-keras/
https://pytorch.org/
https://medium.com/implodinggradients/tensorflow-or-keras-which-one-should-i-learn-5dd7fa3f9ca0
https://medium.com/syncedreview/tensorflow-pytorch-or-mxnet-a-comprehensive-evaluation-on-nlp-cv-tasks-with-titan-rtx-cdf816fc3935
https://medium.com/syncedreview/tensorflow-pytorch-or-mxnet-a-comprehensive-evaluation-on-nlp-cv-tasks-with-titan-rtx-cdf816fc3935
https://www.tensorflow.org/tensorboard
https://brilliant.org/wiki/backpropagation/
https://pcc.cs.byu.edu/2017/10/02/practical-advice-for-building-deep-neural-networks/

