
Neural Nets and the Perceptron (Part 2, Deep
Networks)

Daniel Lawson — University of Bristol

Lecture 09.1.2 (v1.0.2)

Signposting

I This Block is split into two Lectures:
I 09.1 (this lecture) on the theory
I 09.2 on practicalities

I Lecture 09.1 is further split into two parts:
I Part 1: Introduction and the perceptron
I Part 2: Multi-layer Networks

I This is Part 2, which covers:
I Multi layer perceptron and the feed-forward neural network
I Learning for deep neural networks
I Other types of neural networks

ILOs

I ILO2 Be able to use and apply basic machine learning tools
I ILO3 Be able to make and report appropriate inferences from

the results of applying basic tools to data

Multilayer Perceptrons

I We have discussed the basics of how Neural Networks function
I These had only single layers

I Most of what is important in Neural Networks comes from the
addition of hidden layers
I Hidden layers can be treated exactly as the layers we have

observed
I It is the mathematical tools that allow these to be used

modularly that is transformative

Multilayer Perceptrons / Feed Forward Neural Networks

Multilayer Perceptrons / Feed Forward Neural Networks

I Architecture choices include the number of layers and the
connectedness

I Important issues include:
I Completely connected layers?
I Locality towards data?
I Number of neurons in each layer?

I These choices are somewhat manual and define your model
I Architecture is robust, i.e. many choices will lead to similar

predictions. . .
I But they are not arbitrary!

Universal Approximation Theorem

I Any1 function of n inputs can be approximated
I By using non-linear activation functions (e.g. ReLU)
I Using a single hidden layer, with an exponential width

(number of nodes, scale with n)
I Or a (linear in n) deep network with finite width

1continuous, compact function on Rn

Back Propagation

I Learning Neural networks was an art until back propagation
was discovered2.

I This is a method to compute all derivatives of all weights,
exactly and efficiently.

I Notation:
I Index the current layer as k (of K) with node labels i, the next

layer with labels j.
I Activation function xk

j = f(ak
j)

I ak
j = W k

0j +
∑nk

i=1 W
k
ijx

k
i

I Output layer: WK
ij is learned as a Single Layer Perceptron

I Work backwards from there. . .

2Hecht-Nielsen, Robert. “Theory of the backpropagation neural network.”
Neural networks for perception. Academic Press, 1992. 65-93.

Backpropagation network

Back Propagation

I Hidden layers: back-propagate the error from the next layer to
the current, using the chain rule:

∂L

∂W k
ij

=
n(k+1)∑

j=1

∂L

∂x
(k+1)
j

∂x
(k+1)
j

∂a
(k+1)
ij

∂a
(k+1)
j

∂W k
ij

I i.e. we compute the activation function for one layer as a (sum
over) two components:
I error : δk+1

j = ∂L

∂x
(k+1)
j

I response : ∂x
(k+1)
j

∂a
(k+1)
ij

= ∂f(a)
∂a

I response rate : ∂a
(k+1)
j

∂W k
ij

I The last two are often combined, but this representation
separates the activation function from the weights.

Stochastic Gradient Descent

I Gradient Descent is just the beginning. It is appropriate for:

1. Smooth or convex error functions, so that we do not become
trapped in a local optima;

2. Small data regimes, where we can afford to compute the
entire gradient every update.

I Stochastic Gradient Descent addresses local minima and
computational cost together.
I It uses mini-batches of data for a gradient update.
I This makes each update random, creating a type of annealing

in the algorithm:
I We can take large random steps when we are far from the

optima (large step size),
I And much shorter and hence on average reliable steps when we

are closer (small step size).

Additional notes on learning

I Learning a Neural Network is still non-trivial. Start with this
advice3

I Second order methods are often used later in the fitting
process, closer to the global optima.

I Hyperparameters matter. Some optimisers, e.g. Adam, can
tune them semi-automatically. Standard ones require manual
tuning for e.g. step size.

I There is nothing here to prevent overfitting!

3Bengio 2012 Practical Recommendations for Gradient-Based Training of
Deep Architectures

http://arxiv.org/pdf/1206.5533.pdf
http://arxiv.org/pdf/1206.5533.pdf

Learning rates

I not specific to neural networks
I But particularly important due to NN flexibility

Hints on overfitting

I Many optimizers include options for these tricks and more:
I Penalize large weights:

I Ridge (L2) penalisation: L = L0 + λ
∑

i,j |Wij |2
I Lasso (L1) penalisation: L = L0 + λ

∑
i,j |Wij |

I Dropout:
I New hyperparameter pk for layer k: the dropout rate
I Each learning step, with independently randomly set all outputs

from a neuron to 0
I Early stopping:

I retain a test dataset (from the training dataset)
I evaluate performance on the held-out set
I stop when this no longer increases

Interpreting classifier output

I Neural networks output a set of activations
I It is standard to apply softmax p(z) : Rn → [0, 1] s.t.∑n

i=1 zi = 1:
p(zi) = ezi∑

j e
zj

I This interprets the activation as a log-likelihood
I This is almost always wrong

Interpreting classifier output

I Various sophisticated approaches are available:
I e.g. Mixture Density Networks4

I Calibrate probabilities in a “post processing” layer5

I Neural Networks are not (normally) approximating probabilities.
They are predicting data, or equivalently, predicting decisions.
I e.g. A NN driving a car doesn’t care about the probability of a

person being in the screen.
I It cares about the Loss function, which in this case would be

expressed in terms of actions.

4Bishop 1994 Mixture Density Networks
5Kull et al 2019 NeurIPS Beyond temperature scaling: Obtaining

well-calibrated multiclass probabilities with Dirichlet calibration

https://publications.aston.ac.uk/373/1/NCRG_94_004.pdf
https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf
https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf

Some types of neural network

I Feed-forward
I Convolutional
I Recurrent
I Recursive
I Auto-encoders
I . . .

Feed forward neural network

I This is the Neural Network that you know. It is acyclic.

Feed forward neural network

I The feed forward neural network is a universal approximator
I It can therefore be used as a component of a NN to compute

any function y = f(x)
I This can include:

I Likelihoods, so making probabilistic predictions
I Derivatives, (which are evaluated in the feed-forward step!)
I And anything else we can imagine.

I Learning f can be complex, though many papers provide their
network.

I Although all functions are approximable, not all behave nicely.
I For example, densities seem hard to approximate whilst

cumulative distribution functions behave better6.

6Chilinski and Silva Neural Likelihoods via Cumulative Distribution Functions

https://arxiv.org/abs/1811.00974

Convolutional neural network

I This is a feed-forward network that has carefully designed layers
for constructing known features, such as local averaging.

I Choosing CNN architecture is choosing a model
I It should reflect known structure, e.g. locality, exchangeability,

etc

Convolutional neural network

I CNNs are a core part of image processing7

I They scan an image, constructing features
I Different convolutions can create different features, including:

I Larger objects
I Edges
I Presence/absence of either via max-pooling

7Albawi, Mohammed and Al-Zawi Understanding of a convolutional neural
network

https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE
https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE

Recurrent Neural Network

I This is a network containing cycles, which allows for “memory”
and potentially chaotic behavior.

I Training is hard; uses a special algorithm: “causal recursive
backpropagation” which mitigates the disconnect between error
and weights in standard algorithms. . .

Recurrent Neural Network for Point Processes

I An RNN acts as a “memory” for an arbitrary history8

I A CNN acts as a universal approximator to the CDF
I This is translated into the Likelihood of the data by

back-propagation differentiation
8Omi, Ueda and Aihara Fully Neural Network based Model for

GeneralTemporal Point Processes

https://arxiv.org/pdf/1905.09690.pdf
https://arxiv.org/pdf/1905.09690.pdf

Recurrent Neural Network

I Recursive Neural Networks also exist, these allow cycles to
previous layers. . .

I Alphago was an RNN. Alphago zero is better and used a
“two-headed” architecture:

I A value network that attributes values to board positions
I A policy network that links board positions to actions that

realise them
I It is essentially making a giant decision tree, which is pruned to

a manageable set by assigning values to states without seeing
them through to outcomes.

I This is all beyond the scope of the course, but you might wish
to examine how these work

Auto encoders

I Auto encoders provide a low-dimensional representation of the
data

I They consist of separable parts, the encoder and the decoder
I They can be used for de-noising
I They are particularly useful when data are limited

Summary

I Neural Networks are possibly the most important development
in AI.

I They provide universal approximation, allowing non-parametric
approaches to wide problem sets

I Network design is critical, and still very much an art
I If you understand the building blocks just a little, you can

access others’ networks and potentially tweak them

Reflection

I What advantages and disadvantages do Deep Neural Networks
present?

I How straightforward are they to apply? Under which
circumstances?

I Why are they not more used as a universal approximator?
I By the end of the course, you should:

I Understand a neural network at a basic level
I Be able to appropriately select deep learning methods and

architecture
I Be able to work with the mathematics underpinning perceptrons

Signposting

I Still to come:
I Lecture on the practicalities of Neural Networks
I Workshop on using them in practice

References (1)

I Chapter 11 of The Elements of Statistical Learning: Data
Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

I Russell and Norvig Artificial Intelligence: A Modern Approach
I Chapter 20 Section 5: Neural Networks

I Theoretical practicalities:
I Practical advice from Bengio 2012 Practical Recommendations

for Gradient-Based Training of Deep Architectures
I Kull et al 2019 NeurIPS Beyond temperature scaling: Obtaining

well-calibrated multiclass probabilities with Dirichlet calibration

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://aima.eecs.berkeley.edu/
http://aima.eecs.berkeley.edu/slides-pdf/chapter20b.pdf
http://arxiv.org/pdf/1206.5533.pdf
http://arxiv.org/pdf/1206.5533.pdf
https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf
https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf

References (2)

I Important historical papers:
I Hecht-Nielsen, Robert. “Theory of the backpropagation neural

network.” Neural networks for perception. Academic Press,
1992. 65-93.

I Bishop 1994 Mixture Density Networks
I Likelihood and modelling applications of Neural Networks:

I Chilinski and Silva Neural Likelihoods via Cumulative
Distribution Functions

I Albawi, Mohammed and Al-Zawi Understanding of a
convolutional neural network

I Omi, Ueda and Aihara Fully Neural Network based Model for
GeneralTemporal Point Processes

https://publications.aston.ac.uk/373/1/NCRG_94_004.pdf
https://arxiv.org/abs/1811.00974
https://arxiv.org/abs/1811.00974
https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE
https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE
https://arxiv.org/pdf/1905.09690.pdf
https://arxiv.org/pdf/1905.09690.pdf

