Neural Nets and the Perceptron (Part 2, Deep Networks)

Daniel Lawson — University of Bristol

Lecture 09.1.2 (v1.0.2)

Signposting

 \blacktriangleright This Block is split into two Lectures:

- \triangleright 09.1 (this lecture) on the theory
- \triangleright 09.2 on practicalities

 \blacktriangleright Lecture 09.1 is further split into two parts:

- \blacktriangleright Part 1: Introduction and the perceptron
- \blacktriangleright Part 2: Multi-layer Networks

 \blacktriangleright This is Part 2, which covers:

- \blacktriangleright Multi layer perceptron and the feed-forward neural network
- \blacktriangleright Learning for deep neural networks
- \triangleright Other types of neural networks

 \blacktriangleright ILO2 Be able to use and apply basic machine learning tools \blacktriangleright ILO3 Be able to make and report appropriate inferences from the results of applying basic tools to data

Multilayer Perceptrons

 \triangleright We have discussed the basics of how Neural Networks function

- ▶ These had only single layers
- \blacktriangleright Most of what is important in Neural Networks comes from the addition of **hidden layers**
	- \blacktriangleright Hidden layers can be treated exactly as the layers we have observed
	- \blacktriangleright It is the mathematical tools that allow these to be used modularly that is transformative

Multilayer Perceptrons / Feed Forward Neural Networks

Multilayer Perceptrons / Feed Forward Neural Networks

- **If** Architecture choices include the number of layers and the connectedness
- \blacktriangleright Important issues include:
	- \blacktriangleright Completely connected layers?
	- \blacktriangleright Locality towards data?
	- In Number of neurons in each layer?
- If These choices are somewhat manual and define your **model**
- \blacktriangleright Architecture is robust, i.e. many choices will lead to similar predictions. . .
- ▶ But they are **not** arbitrary!

Universal Approximation Theorem

- \blacktriangleright Any¹ function of n inputs can be approximated
- ▶ By using **non-linear** activation functions (e.g. ReLU)
- ▶ Using a single hidden layer, with an exponential width (number of nodes, scale with *n*)
- I Or a (linear in *n*) **deep network with finite width**

 1 continuous, compact function on \mathbb{R}^n

Back Propagation

- ▶ Learning Neural networks was an art until back propagation was discovered².
- \blacktriangleright This is a method to compute all derivatives of all weights, exactly and efficiently.
- \blacktriangleright Notation:
	- Index the current layer as k (of K) with node labels i , the next layer with labels *j*.
	- \blacktriangleright Activation function $x_j^k = f(a_j^k)$

$$
\blacktriangleright \ a_j^k = W_{0j}^k + \sum_{i=1}^{n_k} W_{ij}^k x_i^k
$$

- \blacktriangleright Output layer: W^K_{ij} is learned as a Single Layer Perceptron
- \blacktriangleright Work backwards from there...

 2 Hecht-Nielsen, Robert. "Theory of the backpropagation neural network." Neural networks for perception. Academic Press, 1992. 65-93.

Backpropagation network

Back Propagation

▶ Hidden layers: back-propagate the error from the next layer to the **current**, using the chain rule:

$$
\frac{\partial L}{\partial W_{ij}^k} = \sum_{j=1}^{n_{(k+1)}} \frac{\partial L}{\partial x_j^{(k+1)}} \frac{\partial x_j^{(k+1)}}{\partial a_{ij}^{(k+1)}} \frac{\partial a_j^{(k+1)}}{\partial W_{ij}^k}
$$

 \blacktriangleright i.e. we compute the activation function for one layer as a (sum over) two components:

\n- error:
$$
\delta_j^{k+1} = \frac{\partial L}{\partial x_j^{(k+1)}}
$$
\n- response: $\frac{\partial x_j^{(k+1)}}{\partial a_{ij}^{(k+1)}} = \frac{\partial f(a)}{\partial a}$
\n- response rate: $\frac{\partial a_j^{(k+1)}}{\partial W_{ij}^k}$
\n

 \blacktriangleright The last two are often combined, but this representation separates the activation function from the weights.

Stochastic Gradient Descent

- **F** Gradient Descent is just the beginning. It is appropriate for:
- 1. **Smooth** or **convex** error functions, so that we do not become trapped in a local optima;
- 2. **Small data regimes**, where we can afford to compute the entire gradient every update.
- **Exercise Stochastic Gradient Descent addresses local minima and** computational cost together.
	- It uses mini-batches of data for a gradient update.
	- **I** This makes each update random, creating a type of annealing in the algorithm:
	- \blacktriangleright We can take large random steps when we are far from the optima (large step size),
	- \blacktriangleright And much shorter and hence on average reliable steps when we are closer (small step size).

Additional notes on learning

- \blacktriangleright Learning a Neural Network is still non-trivial. Start with this advice³
	- ► Second order methods are often used later in the fitting process, closer to the global optima.
	- ▶ Hyperparameters matter. Some optimisers, e.g. Adam, can tune them semi-automatically. Standard ones require **manual tuning** for e.g. step size.
- ▶ There is nothing here to prevent **overfitting!**

³Bengio 2012 [Practical Recommendations for Gradient-Based Training of](http://arxiv.org/pdf/1206.5533.pdf) [Deep Architectures](http://arxiv.org/pdf/1206.5533.pdf)

Learning rates

- ▶ not specific to neural networks
- \blacktriangleright But particularly important due to NN flexibility

Hints on overfitting

 \blacktriangleright Many optimizers include options for these tricks and more:

- **Penalize** large weights:
	- \blacktriangleright Ridge (L2) penalisation: $L = L_0 + \lambda \sum_{i,j} |W_{ij}|^2$
	- **E** Lasso (L1) penalisation: $L = L_0 + \lambda \sum_{i,j}^{N} |W_{ij}|$

 \blacktriangleright Dropout:

- \blacktriangleright New hyperparameter p_k for layer k: the **dropout** rate
- \blacktriangleright Each learning step, with independently randomly set all outputs from a neuron to 0

Early stopping:

- \blacktriangleright retain a test dataset (from the training dataset)
- \blacktriangleright evaluate performance on the held-out set
- \blacktriangleright stop when this no longer increases

Interpreting classifier output

- ▶ Neural networks output a set of **activations**
- It is standard to apply **softmax** $p(\mathbf{z}) : \mathbb{R}^n \to [0,1]$ s.t. $\sum_{i=1}^{n} z_i = 1$:

$$
p(z_i) = \frac{e^{z_i}}{\sum_j e^{z_j}}
$$

 \blacktriangleright This interprets the activation as a log-likelihood ▶ This is almost always wrong

Interpreting classifier output

 \blacktriangleright Various sophisticated approaches are available:

- \blacktriangleright e.g. Mixture Density Networks⁴
- \blacktriangleright Calibrate probabilities in a "post processing" layer⁵
- **I** Neural Networks are not (normally) approximating probabilities. They are predicting data, or equivalently, predicting decisions.
	- \triangleright e.g. A NN driving a car doesn't care about the probability of a person being in the screen.
	- It cares about the Loss function, which in this case would be expressed in terms of **actions**.

⁴Bishop 1994 [Mixture Density Networks](https://publications.aston.ac.uk/373/1/NCRG_94_004.pdf)

⁵Kull et al 2019 NeurIPS [Beyond temperature scaling: Obtaining](https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf) [well-calibrated multiclass probabilities with Dirichlet calibration](https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf)

Some types of neural network

 \blacktriangleright Feed-forward \blacktriangleright Convolutional \blacktriangleright Recurrent \blacktriangleright Recursive \blacktriangleright Auto-encoders \blacktriangleright ...

Feed forward neural network

 \blacktriangleright This is the Neural Network that you know. It is acyclic.

Feed forward neural network

- **I** The feed forward neural network is a *universal approximator*
- It can therefore be used as a **component** of a NN to compute any function $y = f(x)$
- \blacktriangleright This can include:
	- **E** Likelihoods, so making probabilistic predictions
	- **Derivatives, (which are evaluated in the feed-forward step!)**
	- And anything else we can imagine.
- \blacktriangleright Learning f can be complex, though many papers provide their network.
- \blacktriangleright Although all functions are approximable, not all behave nicely.
	- \blacktriangleright For example, densities seem hard to approximate whilst cumulative distribution functions behave better⁶.

 6 Chilinski and Silva [Neural Likelihoods via Cumulative Distribution Functions](https://arxiv.org/abs/1811.00974)

Convolutional neural network

 \blacktriangleright This is a feed-forward network that has carefully designed layers for constructing **known features**, such as local averaging.

▶ Choosing CNN architecture is choosing a model It should reflect known structure, e.g. locality, exchangeability, etc

Convolutional neural network

- \triangleright CNNs are a core part of image processing⁷
- ▶ They scan an image, constructing features
- Different convolutions can create different features, including:
	- \blacktriangleright Larger objects
	- \blacktriangleright Edges
	- \blacktriangleright Presence/absence of either via max-pooling

 7 Albawi, Mohammed and Al-Zawi [Understanding of a convolutional neural](https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE) [network](https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE)

Recurrent Neural Network

 \blacktriangleright This is a network containing cycles, which allows for "memory" and potentially chaotic behavior.

 \blacktriangleright Training is hard; uses a special algorithm: "causal recursive backpropagation" which mitigates the disconnect between error and weights in standard algorithms...

Recurrent Neural Network for Point Processes

- An RNN acts as a "memory" for an arbitrary history⁸
- \triangleright A CNN acts as a universal approximator to the CDF
- \blacktriangleright This is translated into the Likelihood of the data by back-propagation differentiation

⁸ Omi, Ueda and Aihara [Fully Neural Network based Model for](https://arxiv.org/pdf/1905.09690.pdf) [GeneralTemporal Point Processes](https://arxiv.org/pdf/1905.09690.pdf)

Recurrent Neural Network

 \blacktriangleright Recursive Neural Networks also exist, these allow cycles to previous layers. . .

▶ Alphago was an RNN. Alphago zero is better and used a "two-headed" architecture:

▶ A value network that attributes values to board positions

- ▶ A **policy network** that links board positions to actions that realise them
- \blacktriangleright It is essentially making a giant decision tree, which is pruned to a manageable set by assigning values to states without seeing them through to outcomes.
- \blacktriangleright This is all beyond the scope of the course, but you might wish to examine how these work

Auto encoders

- \blacktriangleright Auto encoders provide a low-dimensional representation of the data
- \blacktriangleright They consist of separable parts, the encoder and the decoder
- \blacktriangleright They can be used for de-noising
- \blacktriangleright They are particularly useful when data are limited

Summary

- In Neural Networks are possibly the most important development in AI.
- \blacktriangleright They provide universal approximation, allowing non-parametric approaches to wide problem sets
- \blacktriangleright Network design is critical, and still very much an art
- \blacktriangleright If you understand the building blocks just a little, you can access others' networks and potentially tweak them

Reflection

- ▶ What advantages and disadvantages do Deep Neural Networks present?
- \blacktriangleright How straightforward are they to apply? Under which circumstances?
- \blacktriangleright Why are they not more used as a universal approximator?
- \blacktriangleright By the end of the course, you should:
	- \blacktriangleright Understand a neural network at a basic level
	- \blacktriangleright Be able to appropriately select deep learning methods and architecture
	- \blacktriangleright Be able to work with the mathematics underpinning perceptrons

Signposting

 \blacktriangleright Lecture on the practicalities of Neural Networks

 \blacktriangleright Workshop on using them in practice

References (1)

- \blacktriangleright Chapter 11 of [The Elements of Statistical Learning: Data](https://web.stanford.edu/~hastie/Papers/ESLII.pdf) [Mining, Inference, and Prediction](https://web.stanford.edu/~hastie/Papers/ESLII.pdf) (Friedman, Hastie and Tibshirani).
- ▶ Russell and Norvig [Artificial Intelligence: A Modern Approach](http://aima.eecs.berkeley.edu/)
	- ▶ [Chapter 20 Section 5: Neural Networks](http://aima.eecs.berkeley.edu/slides-pdf/chapter20b.pdf)
- \blacktriangleright Theoretical practicalities:
	- ▶ Practical advice from Bengio 2012 [Practical Recommendations](http://arxiv.org/pdf/1206.5533.pdf) [for Gradient-Based Training of Deep Architectures](http://arxiv.org/pdf/1206.5533.pdf)
	- In Kull et al 2019 NeurlPS [Beyond temperature scaling: Obtaining](https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf) [well-calibrated multiclass probabilities with Dirichlet calibration](https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf)

References (2)

 \blacktriangleright Important historical papers:

 \blacktriangleright Hecht-Nielsen, Robert. "Theory of the backpropagation neural network." Neural networks for perception. Academic Press, 1992. 65-93.

Bishop 1994 [Mixture Density Networks](https://publications.aston.ac.uk/373/1/NCRG_94_004.pdf)

 \blacktriangleright Likelihood and modelling applications of Neural Networks:

- \blacktriangleright Chilinski and Silva [Neural Likelihoods via Cumulative](https://arxiv.org/abs/1811.00974) [Distribution Functions](https://arxiv.org/abs/1811.00974)
- ▶ Albawi, Mohammed and Al-Zawi [Understanding of a](https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE) [convolutional neural network](https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE)
- ▶ Omi, Ueda and Aihara [Fully Neural Network based Model for](https://arxiv.org/pdf/1905.09690.pdf) [GeneralTemporal Point Processes](https://arxiv.org/pdf/1905.09690.pdf)