
Neural Nets and the Perceptron (Part 1, Artificial
Neurons)

Daniel Lawson — University of Bristol

Lecture 09.1.1 (v1.0.2)



Signposting

I This Block is split into two Lectures:
I 09.1 (this lecture) on the theory
I 09.2 on practicalities

I Lecture 09.1 is further split into two parts:
I Part 1: Introduction and the perceptron
I Part 2: Multi-layer Networks

I This is Part 1, which covers:
I Introduction
I Neurons
I Single layer perceptron
I Learning algorithms



ILOs

I ILO2 Be able to use and apply basic machine learning tools
I ILO3 Be able to make and report appropriate inferences from

the results of applying basic tools to data



Neurons

I Dendrites take inputs
I Axons fire on activation
I Form a dynamical system



Artificial Neurons

I Take a number of input signals
I Activation function transforms to output
I Output sent as input to downstream neurons
I (Typically) constructed to form a directed system for learning



Activation functions

I Neuron i is modelled as:
I A nonlinear activation function f :
I a base rate W0,i,
I and weights Wj,i for each input neuron aj with output xaj

:

f

W0,i +
∑
j=1

Wj,ixaj

 ,

I f is a mapping R→ [rmin, rmax] (which may not be bounded).
I There are many common choices, e.g.:

I tanh: f(y) = (1 + tanh(y)) /2
I logistic: f(y) = 1/ (1 + e−y)
I Step function: f(y) = I(y > 0)
I Rectified linear unit (ReLU): f(y) = I(y > 0)y



Activation functions



Activation functions
I The important features of activation functions are:

I Non-linearity. A deep neural network can be trivially replicated
by a one layer neural network if the activations are linear.

I Derivatives. Learning requires evaluating derivatives, which
should be cheap, and informative.

I Smoothness. Simple discontinuities can be handled, complex
ones make learning slow.

I In practice:
I ReLU contains the important complexity whilst being very fast

to learn;
I It may exhibit convergence problems when y << 0;
I For small networks, complex activation helps.

I A notable modern alternative is Swish1:
I f(y) = y/ (1 + exp(−βy))
I ReLU-like: Converges to zero for x→ −∞ and to x for

x→∞
I Has unbounded derivative for x < 0 so learning still works
I Strangely, monotonicity seems not to be important?

1Ramachandran, Zoph and Le Searching for Activation Functions

https://arxiv.org/abs/1710.05941


Logical functions

I Every boolean function can be implemented by a neural
network2.

I For simplicity f(x ≤ 0) = 0, and f(x > 0) = 1, i.e. the neuron
“fires” on activation. Then, the following can be implemented
on a single node:
I AND: f(x1, x2) = −1.5 + x1 + x2
I OR: f(x1, x2) = −0.5 + x1 + x2
I NOT: f(x1) = 0.5− x1

I Neural networks with more general activation functions can still
implement these functions.

2McCulloch and Pitts (1943) A logical calculus of the ideas immanent in
nervous activity



Logical function problems

I But not every function can be implemented in a single layer
perceptron3:
I XOR: only x1 or x2 can be active

3Minsky and Papert 1969 Perceptrons



Single Layer perceptron (SLP)

I Has just two layers:
I data layer (e.g. features)
I output layer (e.g. classes)

I No hidden layers!
I Weights learned
I Making a linear

classification rule



Mathematical description of SLP
I N Inputs xi and M outputs yj

I Activation function f and with weights Wij :

f(x) = f

(
W0j +

N∑
i=1

Wijxi

)

I W0j allows for an offset (mean) in the activation, just like in
linear regression

I Loss is the square error over all output variables j:

L(W ) =
M∑

j=1
Lj =

M∑
j=1

[
yj − f

(
W0j +

N∑
i=1

Wijxi

)]2

=
M∑

j=1
δ2

ij(wj)

I δij(wj) is the error for input i output j.



Learning the SLP
I Learn through Gradient Descent:

I i.e. Differentiate the loss with respect to the weights for
i = 0, . . . , N :

∇WL =
(

∂L

∂W10
, . . . ,

∂L

∂Wij
. . . ,

∂L

∂WNM

)T

I where:
∂L

∂Wij
= ∂L

∂f

∂f

∂Wij
= −2δij

∂f

∂Wij
,

I Leading to the update rule:

Wij ←Wij + α
∂f

∂Wij
δij

I We are taking a step of size α in a direction towards the
multivariate minima of the loss

I Choose step size α to take steps that move fast enough whilst
not overshooting.

I In practice α is learned adaptively.



Summary

I Neural Networks are possibly the most important development
in AI.

I They are a subject of intense mathematical discussion.
I These basic building blocks are straightforward and provide

intuition.
I We’ve only scratched the surface here.



Reflection

I What are the key similarities and differences between real and
artificial neurons?

I Why are the properties of activation functions (non-linearity,
smoothness, derivatives) important?

I Are perceptrons universal approximators? What implications
does this have for their use?

I By the end of the course, you should:
I Understand a neural network at a basic level
I Be able to appropriately select deep learning methods and

architecture
I Be able to work with the mathematics underpinning perceptrons



Signposting

I Next Lecture: Part 2, getting to deep neural networks
I References:
I Chapter 11 of The Elements of Statistical Learning: Data

Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

I Russell and Norvig Artificial Intelligence: A Modern Approach
I Chapter 20 Section 5: Neural Networks

I Swish: Ramachandran, Zoph and Le Searching for Activation
Functions

I Important historical papers:
I McCulloch and Pitts (1943) A logical calculus of the ideas

immanent in nervous activity
I Minsky and Papert 1969 Perceptrons

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://aima.eecs.berkeley.edu/
http://aima.eecs.berkeley.edu/slides-pdf/chapter20b.pdf
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941

