Neural Nets and the Perceptron (Part 1, Artificial Neurons)

Daniel Lawson — University of Bristol

Lecture 09.1.1 (v1.0.2)

Signposting

 \blacktriangleright This Block is split into two Lectures:

- \triangleright 09.1 (this lecture) on the theory
- \triangleright 09.2 on practicalities

 \blacktriangleright Lecture 09.1 is further split into two parts:

- \blacktriangleright Part 1: Introduction and the perceptron
- \blacktriangleright Part 2: Multi-layer Networks

 \blacktriangleright This is Part 1, which covers:

- Introduction
- \blacktriangleright Neurons
- \blacktriangleright Single layer perceptron
- \blacktriangleright Learning algorithms

 \blacktriangleright ILO2 Be able to use and apply basic machine learning tools \blacktriangleright ILO3 Be able to make and report appropriate inferences from the results of applying basic tools to data

Neurons

- \blacktriangleright Dendrites take inputs
- \blacktriangleright Axons fire on activation
- ▶ Form a dynamical system

Artificial Neurons

- \blacktriangleright Take a number of input signals
- \blacktriangleright Activation function transforms to output
- \triangleright Output sent as input to downstream neurons
- ▶ (Typically) constructed to form a **directed system** for learning

Activation functions

 \blacktriangleright Neuron *i* is modelled as:

▶ A nonlinear **activation** function *f*:

 \blacktriangleright a base rate $W_{0,i}$,

 \blacktriangleright and weights $W_{j,i}$ for each input neuron a_j with output x_{a_j} :

$$
f\left(W_{0,i}+\sum_{j=1}W_{j,i}x_{a_j}\right),\,
$$

 \blacktriangleright f is a mapping $\mathbb{R} \to [r_{min}, r_{max}]$ (which may not be bounded). \blacktriangleright There are many common choices, e.g.:

1 tanh:
$$
f(y) = (1 + \tanh(y))/2
$$

$$
\bullet \ \logistic: f(y) = 1/(1+e^{-y})
$$

- <u>If Step function:</u> $f(y) = \overline{\mathbb{I}(y > 0)}$
- \blacktriangleright Rectified linear unit (ReLU): $f(y) = \mathbb{I}(y > 0)y$

Activation functions

Activation functions

- \blacktriangleright The important features of activation functions are:
	- ▶ Non-linearity. A deep neural network can be trivially replicated by a one layer neural network if the activations are linear.
	- **Derivatives.** Learning requires evaluating derivatives, which should be cheap, and informative.
	- **F** Smoothness. Simple discontinuities can be handled, complex ones make learning slow.
- \blacktriangleright In practice:
	- \blacktriangleright ReLU contains the important complexity whilst being very fast to learn;
	- It may exhibit convergence problems when $y \ll 0$;
	- \blacktriangleright For small networks, complex activation helps.
- ▶ A notable modern alternative is **Swish**¹:
	- \blacktriangleright *f*(*y*) = *y*/(1 + exp(−*βy*))
	- I **ReLU-like**: Converges to zero for *x* → −∞ and to *x* for $x \rightarrow \infty$
	- \blacktriangleright Has unbounded derivative for $x < 0$ so learning still works
	- \blacktriangleright Strangely, monotonicity seems not to be important?

¹Ramachandran, Zoph and Le [Searching for Activation Functions](https://arxiv.org/abs/1710.05941)

Logical functions

- \blacktriangleright Every boolean function can be implemented by a neural network².
- For simplicity $f(x < 0) = 0$, and $f(x > 0) = 1$, i.e. the neuron "fires" on activation. Then, the following can be implemented on a single node:

$$
\triangleright \text{ AND: } f(x_1, x_2) = -1.5 + x_1 + x_2
$$

• OR:
$$
f(x_1, x_2) = -0.5 + x_1 + x_2
$$

► NOT:
$$
f(x_1) = 0.5 - x_1
$$

 \blacktriangleright Neural networks with more general activation functions can still implement these functions.

 2 McCulloch and Pitts (1943) A logical calculus of the ideas immanent in nervous activity

Logical function problems

 \triangleright But not every function can be implemented in a single layer perceptron³:

 \blacktriangleright XOR: only x_1 or x_2 can be active

³Minsky and Papert 1969 Perceptrons

Single Layer perceptron (SLP)

 \blacktriangleright Has just two layers:

- \blacktriangleright data layer (e.g. features)
- output layer (e.g. classes)
- ▶ No hidden layers!
- \blacktriangleright Weights learned
- \blacktriangleright Making a linear classification rule

Mathematical description of SLP

 \blacktriangleright *N* Inputs x_i and M outputs y_j

 \blacktriangleright Activation function f and with weights W_{ij} :

$$
f(\mathbf{x}) = f\left(W_{0j} + \sum_{i=1}^{N} W_{ij} x_i\right)
$$

 \blacktriangleright W_{0j} allows for an offset (mean) in the activation, just like in linear regression

 \blacktriangleright Loss is the square error over all output variables i :

$$
L(W) = \sum_{j=1}^{M} L_j = \sum_{j=1}^{M} \left[y_j - f\left(W_{0j} + \sum_{i=1}^{N} W_{ij} x_i\right) \right]^2
$$

=
$$
\sum_{j=1}^{M} \delta_{ij}^2(\mathbf{w}_j)
$$

 \blacktriangleright $\delta_{ij}(\mathbf{w}_j)$ is the error for input *i* output *j*.

Learning the SLP

- Exteent: Learn through Gradient Descent:
	- ▶ i.e. Differentiate the loss with respect to the weights for $i = 0, \ldots, N$:

$$
\nabla_W L = \left(\frac{\partial L}{\partial W_{10}}, \ldots, \frac{\partial L}{\partial W_{ij}}\ldots, \frac{\partial L}{\partial W_{NM}}\right)^T
$$

$$
\blacktriangleright
$$
 where:

$$
\frac{\partial L}{\partial W_{ij}} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial W_{ij}} = -2\delta_{ij} \frac{\partial f}{\partial W_{ij}},
$$

 \blacktriangleright Leading to the update rule:

$$
W_{ij} \leftarrow W_{ij} + \alpha \frac{\partial f}{\partial W_{ij}} \delta_{ij}
$$

- \blacktriangleright We are taking a step of size α in a direction towards the multivariate **minima of the loss**
- **I** Choose step size α to take steps that move fast enough whilst not overshooting.
- In practice α is learned adaptively.

Summary

- \blacktriangleright Neural Networks are possibly the most important development in AI.
- \blacktriangleright They are a subject of intense mathematical discussion.
- \blacktriangleright These basic building blocks are straightforward and provide intuition.
- \blacktriangleright We've only scratched the surface here.

Reflection

- \blacktriangleright What are the key similarities and differences between real and artificial neurons?
- \blacktriangleright Why are the properties of activation functions (non-linearity, smoothness, derivatives) important?
- \blacktriangleright Are perceptrons universal approximators? What implications does this have for their use?
- \blacktriangleright By the end of the course, you should:
	- \blacktriangleright Understand a neural network at a basic level
	- \blacktriangleright Be able to appropriately select deep learning methods and architecture
	- \blacktriangleright Be able to work with the mathematics underpinning perceptrons

Signposting

- \blacktriangleright Next Lecture: Part 2, getting to deep neural networks
- **EXP** References:
- \blacktriangleright Chapter 11 of [The Elements of Statistical Learning: Data](https://web.stanford.edu/~hastie/Papers/ESLII.pdf) [Mining, Inference, and Prediction](https://web.stanford.edu/~hastie/Papers/ESLII.pdf) (Friedman, Hastie and Tibshirani).
- ▶ Russell and Norvig [Artificial Intelligence: A Modern Approach](http://aima.eecs.berkeley.edu/) \blacktriangleright [Chapter 20 Section 5: Neural Networks](http://aima.eecs.berkeley.edu/slides-pdf/chapter20b.pdf)
- ▶ Swish: Ramachandran, Zoph and Le [Searching for Activation](https://arxiv.org/abs/1710.05941) [Functions](https://arxiv.org/abs/1710.05941)
- \blacktriangleright Important historical papers:
	- \blacktriangleright McCulloch and Pitts (1943) A logical calculus of the ideas immanent in nervous activity
	- ▶ Minsky and Papert 1969 Perceptrons