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Signposting

I This lecture 8.2 of Algorithms for Data Science
I The lecture is in two parts:

I Part 1 Data Structures
I Part 2 Algorithms

I This is Part 2 on Big Data Algorithms:
I Sampling for big data (Reservoir/non-uniform)
I Bloom filters
I Sketching
I MinHash



Sampling (for big data)

I If there are N (large) items, how do we correctly sample n of
them?

I Naive approach: read in the data, choose n at random, done.
I What if the data don’t fit in memory? We might choose a

subset e.g. by:
I Random sampling: Choose each point with probability

p = n/N
I Uniform sampling: Choose every n/N th point
I Efficiently?



Sampling (when we don’t know N)

I Reservoir sampling:
I Keep the first n items. For the remaning items i:
I Accept the new item with probability n/i

I discard uniformly from the n.
I Otherwise, keep the old items.

I Weighted versions etc exist.
I Generates samples uniformly from the whole set of n with fixed

storage.



Non-Uniform sampling

I Sometimes, most data is “boring”. We want to sample the
“most useful” data.

I One solution is to divide the data into histogram bins and
sample inversely with frequency using e.g. reservoir sampling
within each

I How to choose the bins?
I Choice in advance requires knowledge of the data, or looking at

it already
I Dynamic approaches are possible where the bins are learned in a

streaming manner1
I The algorithm can be tuned for estimating particular quantities,

e.g. the mean2

1Streaming histogram implementation
2Risto Tuomainen Data Sampling for Big Data

https://github.com/VividCortex/gohistogram
https://www.cs.helsinki.fi/u/jilu/paper/tuomainen.pdf


Filtering

I Filters have the goal of retaining information regarding which
data have previously been seen, without storing it all.

I Example: we have a datastream of (many) observed MAC
addresses from users.
I Question: have we seen value x before?
I Can we do this with constant cost Θ(1) per item?



Bloom Filter

I A bloom filter can tell in constant time whether:
1. a data point is not in the database
2. a data point might be in the database

I It does this by storing all of the observed data solely as a hash
h(x)→ (0, r].
I The data are stored as a bitvector br.
I The larger the range, the more precise the answer will be but

the greater the cost.
I For each datapoint xi we:
1. Compute k hashes in [0, r), hk(xi)
2. Set all bits hashed into to one, i.e. br(hk(xi)) = 1
I At lookup time: if any br(hk(xi)) = 0 then we have not seen

this item before.
I See Bill Mill’s excellent Bloom filter practical

https://llimllib.github.io/bloomfilter-tutorial/


Choosing parameters for a bloom filter

I There are three variables: the number of data expected to
be stored, n, the number of hashes k and the length of the
bitvector r.

I The error rate is expected to be (1− exp(−kn/r))k

I It turns out that this is minimised when k = r/n ln(2)
I You then trade of error rate for storage size (for the bit vector)

and compute cost (for the hashes)
I Bloom Filters are very useful, for example in Network analysis3

and Network Security4

3Broder & Mitzenmacher “Network Applications of Bloom Filters: A Survey”
(2003) Internet Mathematics 1:485-509

4Geravand & Ahmadi “Bloom filter applications in network security: A
state-of-the-art survey” (2013) Computer Networks 57:4047-4064



Sketching

I Sketching is obtaining the frequency properties of your data
from a data stream.

I One important class is probabilistic counting, which addresses
how many of each class there are.



Count-min-sketch

I Count-min-sketch works just like a bloom filter, except that we
store an integer for each has rather than a single bit.

I We initialise br = 0, and then:
1. Compute k hashes in (0, r], hk(xi)
2. Add one to all bits hashed into, i.e. br(hk(xi))+ = 1

I At lookup time, the number of items is estimated to be

argminhk(xi)br(hk(xi))

i.e. the minimum count.
I See e.g. Python inplementation of Count Min Sketch by Rafael

Carrascosa (part of PyPI)

https://github.com/rafacarrascosa/countminsketch


Other important algorithms:

I The MinHash algorithm quickly computes similarities between
sparse feature vectors such as documents.

I Locality Sensitive Hashing reduces the dimensionality of
data by representing an object as a set of hashes, chosen so
that “similar” items have “similar” hash values

I The Hashing Trick is a Machine-Learning tool for turning
arbitrary objects into features - just take one or more locality
sensitive hashes of the object as new features.

I There are a range of sketches with different biases, such as the
Count-Mean-Sketch and others5.

5Goyal, Daume & Cormode “Sketch Algorithms for Estimating Point Queries
in NLP” (2012) Proc. EMNLP.



MinHash motivation

I Consider a very large, potentially sparse, binary feature space
for which we have observations A = {xi} and B = {xk}. How
similar are they?

I One natural measure is the Jaccard Similarity:

J(xi, xj) = xi ∩ xj

xi ∪ xj

I This is slow to compute with a large sparse features space,
such as words.

I The solution is to approximate the similarity via MinHash.



MinHash algorithm

I To compute a single MinHash Signature:
I Use a random hash function and apply it to all values in A

and B.
I Compute the minimum of each of these.
I The probability of these being equal turns out to J(A, B).

I To estimate J , we simply do this several times.
I This was used for website Duplicate detection by AltaVista and

was confirmed to be still in use by Google in 2007. There are a
lot of websites. . .

I See e.g. Chris McCormick’s Minhash tutorial or the Mining of
Massive Datasets book and course.

http://mccormickml.com/2015/06/12/minhash-tutorial-with-python-code/
http://mccormickml.com/2015/06/12/minhash-tutorial-with-python-code/
http://mccormickml.com/2015/06/12/minhash-tutorial-with-python-code/


Discussion

I Exploiting convenient algorithms forms a key part of many
high-throughput models.

I Many data streams, especially cyber, have a power-law
distribution of activity: much of the data are seen only once,
whilst some heavy hitters might make up the majority of the
dataset.

I Identification of heavy hitters and singletons allows them to be
treated specially which can massively reduce computational
burden.

I For example, to process a massive cyber dataset:
I Use a Bloom filter to store only information on IP Addresses

you’ve seen more than once,
I A Count-Min-Sketch to identify heavy hitters,
I Store the remaining data in a suitable hash table,
I On which you construct a model.



Reflection

I How could you use these data structures and algorithms in your
assessments?

I To what extent do you need to understand them in order to
gain value in data science?

I By the end of this course, you should:
I Be able to work with and recognise the dynamic data

structures (Queues, Stacks, Hash tables, Binary Trees, Linked
Lists)

I Be able to recognise and exploit simple algorithms (Samplers,
Filters, Sketching, MinHash)

I Relate their use to Big Data problems



Signposting

I This is the end of the lecture content.
I The workshop is very short due to the extra theoretical content.
I Next block in 09: Neural Networks.
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