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Signposting

» This lecture 8.2 of Algorithms for Data Science
» The lecture is in two parts:
» Part 1 Data Structures
» Part 2 Algorithms
» This is Part 2 on Big Data Algorithms:
» Sampling for big data (Reservoir/non-uniform)
» Bloom filters

» Sketching
» MinHash



Sampling (for big data)

» If there are N (large) items, how do we correctly sample n of
them?
» Naive approach: read in the data, choose n at random, done.
» What if the data don't fit in memory? We might choose a
subset e.g. by:
» Random sampling: Choose each point with probability
p=n/N
» Uniform sampling: Choose every n/Nth point
> Efficiently?



Sampling (when we don't know V)

» Reservoir sampling;:

» Keep the first n items. For the remaning items i:

> Accept the new item with probability n/i

» discard uniformly from the n.

» Otherwise, keep the old items.
P> Weighted versions etc exist.
» Generates samples uniformly from the whole set of n with fixed

storage.



Non-Uniform sampling

» Sometimes, most data is “boring”. We want to sample the
“most useful” data.

» One solution is to divide the data into histogram bins and
sample inversely with frequency using e.g. reservoir sampling
within each

» How to choose the bins?

» Choice in advance requires knowledge of the data, or looking at
it already

» Dynamic approaches are possible where the bins are learned in a
streaming manner!

» The algorithm can be tuned for estimating particular quantities,
e.g. the mean?

1Streaming histogram implementation
Risto Tuomainen Data Sampling for Big Data



https://github.com/VividCortex/gohistogram
https://www.cs.helsinki.fi/u/jilu/paper/tuomainen.pdf

Filtering

> Filters have the goal of retaining information regarding which
data have previously been seen, without storing it all.

» Example: we have a datastream of (many) observed MAC
addresses from users.

> Question: have we seen value x before?
» Can we do this with constant cost ©(1) per item?



Bloom Filter

» A bloom filter can tell in constant time whether:

1. a data point is not in the database
2. a data point might be in the database

> It does this by storing all of the observed data solely as a hash
h(z) — (0,r].
» The data are stored as a bitvector b,..
» The larger the range, the more precise the answer will be but
the greater the cost.
For each datapoint x; we:

Compute k hashes in [0,7), hg(z;)
Set all bits hashed into to one, i.e. b.(hg(z;)) =1
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At lookup time: if any b,.(hg(z;)) = 0 then we have not seen
this item before.

> See Bill Mill's excellent Bloom filter practical



https://llimllib.github.io/bloomfilter-tutorial/

Choosing parameters for a bloom filter

» There are three variables: the number of data expected to
be stored, n, the number of hashes k£ and the length of the
bitvector r.

» The error rate is expected to be (1 — exp(—kn/r))*

» It turns out that this is minimised when k& = r/n1n(2)

» You then trade of error rate for storage size (for the bit vector)
and compute cost (for the hashes)

» Bloom Filters are very useful, for example in Network analysis®
and Network Security*

3Broder & Mitzenmacher “Network Applications of Bloom Filters: A Survey”
(2003) Internet Mathematics 1:485-509

“Geravand & Ahmadi “Bloom filter applications in network security: A
state-of-the-art survey” (2013) Computer Networks 57:4047-4064



Sketching

» Sketching is obtaining the frequency properties of your data
from a data stream.

» One important class is probabilistic counting, which addresses
how many of each class there are.



Count-min-sketch

» Count-min-sketch works just like a bloom filter, except that we
store an integer for each has rather than a single bit.
» We initialise b,, = 0, and then:
1. Compute k hashes in (0,7], hy(z;)
2. Add one to all bits hashed into, i.e. b,(hg(z;))+ =1

» At lookup time, the number of items is estimated to be

argming, ¢, br (hi(zi))

i.e. the minimum count.
» See e.g. Python inplementation of Count Min Sketch by Rafael
Carrascosa (part of PyPl)



https://github.com/rafacarrascosa/countminsketch

Other important algorithms:

» The MinHash algorithm quickly computes similarities between
sparse feature vectors such as documents.

» Locality Sensitive Hashing reduces the dimensionality of
data by representing an object as a set of hashes, chosen so
that “similar” items have “similar” hash values

» The Hashing Trick is a Machine-Learning tool for turning
arbitrary objects into features - just take one or more locality
sensitive hashes of the object as new features.

» There are a range of sketches with different biases, such as the
Count-Mean-Sketch and others®.

®Goyal, Daume & Cormode “Sketch Algorithms for Estimating Point Queries
in NLP" (2012) Proc. EMNLP.



MinHash motivation

» Consider a very large, potentially sparse, binary feature space
for which we have observations A = {z;} and B = {z;}. How
similar are they?

» One natural measure is the Jaccard Similarity:
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» This is slow to compute with a large sparse features space,
such as words.

» The solution is to approximate the similarity via MinHash.



MinHash algorithm
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To compute a single MinHash Signature:

» Use a random hash function and apply it to all values in A

and B.

» Compute the minimum of each of these.

» The probability of these being equal turns out to J(A, B).
To estimate J, we simply do this several times.
This was used for website Duplicate detection by AltaVista and
was confirmed to be still in use by Google in 2007. There are a
lot of websites. . .
See e.g. Chris McCormick's Minhash tutorial or the Mining of
Massive Datasets book and course.



http://mccormickml.com/2015/06/12/minhash-tutorial-with-python-code/
http://mccormickml.com/2015/06/12/minhash-tutorial-with-python-code/
http://mccormickml.com/2015/06/12/minhash-tutorial-with-python-code/

Discussion

» Exploiting convenient algorithms forms a key part of many
high-throughput models.

> Many data streams, especially cyber, have a power-law
distribution of activity: much of the data are seen only once,
whilst some heavy hitters might make up the majority of the
dataset.

» Identification of heavy hitters and singletons allows them to be
treated specially which can massively reduce computational
burden.

» For example, to process a massive cyber dataset:

» Use a Bloom filter to store only information on |IP Addresses
you've seen more than once,

» A Count-Min-Sketch to identify heavy hitters,

» Store the remaining data in a suitable hash table,

» On which you construct a model.



Reflection

» How could you use these data structures and algorithms in your
assessments?
» To what extent do you need to understand them in order to
gain value in data science?
» By the end of this course, you should:
» Be able to work with and recognise the dynamic data
structures (Queues, Stacks, Hash tables, Binary Trees, Linked
Lists)
> Be able to recognise and exploit simple algorithms (Samplers,
Filters, Sketching, MinHash)
» Relate their use to Big Data problems



Signposting

» This is the end of the lecture content.
» The workshop is very short due to the extra theoretical content.
» Next block in 09: Neural Networks.
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