
Algorithms for Data Science (Part 1 - Data
Structures)

Daniel Lawson — University of Bristol

Lecture 08.2.1 (v1.0.1)



Signposting

I This lecture 8.2 of Algorithms for Data Science follows 8.1 on
Analysing Algorithms
I It is about some key algorithms that make Data Science

approachable, even without a Big Data Platform.
I These ideas are building blocks for statistical and

machine-learning approaches for inference.
I The lecture is in two parts:

I Part 1 Data Structures
I Part 2 Algorithms

I This is Part 1, covering Dynamic Data Structures:
I Hashing
I Queues/Stacks
I Linked Lists
I Binary Trees/Heaps
I Hash tables



ILOs

I ILO2 Be able to use and apply basic machine learning tools
I ILO4 Be able to use high throughput computing infrastructure

and understand appropriate algorithms
I ILO5 Be able to reason about and conceptually align problems

involving real data to appropriate theoretical methods and
available methodology to correctly make inferences and
decisions



Hash functions

I One of the most important components in good algorithmic
design is the hash.

I Simply, a hash h is a map for h(x) = u with:

x ∈ X → u ∈ U [0, r).

I i.e., we map each item in the space X into the Uniform
distribution on the integers 0, . . . , r − 1.

I Each item will always map to the same integer.



Hash examples

I Some simple methods for creating keys from integers.
I Open DSA - Data Structures and Algorithms is a great

reference.
I Modulo r

x % 16 # modulo 16

I Binning (floor function or integer division)
x // 32 # need to know max(N) for r

I Mid-Square method: square the value, use the middle digits in
the hash

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/HashFuncExamp.html


Hash examples

I Some simple methods for creating keys from integers.
I Open DSA - Data Structures and Algorithms is a great

reference.
I Modulo r

x % 16 # modulo 16

I Binning (floor function or integer division)
x // 32 # need to know max(N) for r

I Mid-Square method: square the value, use the middle digits in
the hash

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/HashFuncExamp.html


Hash examples

I Some simple methods for creating keys from integers.
I Open DSA - Data Structures and Algorithms is a great

reference.
I Modulo r

x % 16 # modulo 16

I Binning (floor function or integer division)
x // 32 # need to know max(N) for r

I Mid-Square method: square the value, use the middle digits in
the hash

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/HashFuncExamp.html


Hash considerations

I There are many choices for a hash function in practice.
Considerations include:

I Randomness. For many applications (e.g. cryptography) we
want no correlation between x and u.

I Locality. For other applications (e.g. locality sensitive hashing)
we want similar x to produce similar u.

I Collisions. We may wish to reduce collisions on a subset of
the potential input space. For example, if x ∈ [0, r) and
u ∈ [0, r) it is possible to eliminate collisions.

I Compute. Hash functions vary in their compute cost.
I Families. It is often useful to be able to index a family of hash

functions with the same computational cost that return
different values.



Data Structures

I Data structures are representations of a set of data
I This representation is particularly important when sets are

dynamic, i.e. grow or shrink
I We will perform operations on the set, which will have an

associated computation cost
I The data structure has an associated space cost
I Making the right choice of data structure is an essential

component of data science



Fixed size elementary data structures

I We are familiar with the concepts of:
I Arrays: A segment of memory containing n data of the same

type
I Vectors: Arrays with additional operations defined
I Multi-dimensional arrays: Arrays of length

n = n0 × n1 × · · · × nk, with entries specified according to a
protocol (e.g. row-wise)

I Matrices/Tensors: Multidimensional arrays with additional
operations defined

I It is clear that arrays are a fundamental concept!



Elementary data structures: Stacks and Queues

5 1 5 12 3 1 7 12

read writewriteread read

I Stacks: Data are stored in an array using “first in, last out”:
insertions and deletions occur at the same end
I Implemented as a pointer to the last read location

I Queues: Data are stored in an array using “first in, first out”:
insertions occur one end, deletions the other
I Implemented as a pointer to the end (for writing) and start (for

reading) that tracks removed items

I Despite implementation similarities, both have different Data
Science properties!



Elementary data structures: Stacks and Queues

5 1 5 12 3 1 7 12

read write

writeread read

I Stacks: Data are stored in an array using “first in, last out”:
insertions and deletions occur at the same end
I Implemented as a pointer to the last read location

I Queues: Data are stored in an array using “first in, first out”:
insertions occur one end, deletions the other
I Implemented as a pointer to the end (for writing) and start (for

reading) that tracks removed items

I Despite implementation similarities, both have different Data
Science properties!



Elementary data structures: Stacks and Queues

5 1 5 12 3 1 7 12

read writewriteread read

I Stacks: Data are stored in an array using “first in, last out”:
insertions and deletions occur at the same end
I Implemented as a pointer to the last read location

I Queues: Data are stored in an array using “first in, first out”:
insertions occur one end, deletions the other
I Implemented as a pointer to the end (for writing) and start (for

reading) that tracks removed items

I Despite implementation similarities, both have different Data
Science properties!



Elementary data structures: Stacks and Queues

5 1 5 12 3 1 7 12

read write

writeread

read

I Stacks: Data are stored in an array using “first in, last out”:
insertions and deletions occur at the same end
I Implemented as a pointer to the last read location

I Queues: Data are stored in an array using “first in, first out”:
insertions occur one end, deletions the other
I Implemented as a pointer to the end (for writing) and start (for

reading) that tracks removed items

I Despite implementation similarities, both have different Data
Science properties!



Elementary data structures: Stacks and Queues

5 1 5 12 3 1 7 12

read write

write

read

read

I Stacks: Data are stored in an array using “first in, last out”:
insertions and deletions occur at the same end
I Implemented as a pointer to the last read location

I Queues: Data are stored in an array using “first in, first out”:
insertions occur one end, deletions the other
I Implemented as a pointer to the end (for writing) and start (for

reading) that tracks removed items

I Despite implementation similarities, both have different Data
Science properties!



Elementary data structures: Stacks and Queues

5 1 5 12 3 1 7 12

read writewriteread read

I Stacks: Data are stored in an array using “first in, last out”:
insertions and deletions occur at the same end
I Implemented as a pointer to the last read location

I Queues: Data are stored in an array using “first in, first out”:
insertions occur one end, deletions the other
I Implemented as a pointer to the end (for writing) and start (for

reading) that tracks removed items

I Despite implementation similarities, both have different Data
Science properties!



Elementary data structures: Linked List

5 1 5

I Linked list: Data are stored in a list, with a pointer to the
location of the next item
I Fast traversion, insertion and deletion
I Slow random access
I Can be doubly linked



Elementary data structures: Binary Trees & Heaps

5 1 5 12 3 1 7 12
5

1
1 5

3

12
7 12

I Binary Trees: Data are stored in a binary linked list, i.e. each
node has (up to) two children
I Data can be stored at nodes or leaves
I Critical to define the left/right operation!

I Position is decided by a key, which can be related to the value
I In the picture, values ≤ x go left, > x go right
I Some binary tree structures assign values to internal nodes,

e.g. means/ranges
I Heaps: A binary tree where each node’s key is (larger) than

it’s children



Elementary data structures: Hash Tables

I Hash Tables: Data location determined by the key
I The key is a hash x = hl: either of an attribute (e.g. a name),

or of the value
I Advantage is O(1) lookup cost. Usage is:

1. Compute u = h2(x)
2. Set u′ = u%r
3. To insert: store y at this position. On collision, we use some

rule to find an empty space, such as rehashing, or storing a
linked list.

4. To lookup: retrive this value (using the same rule about
collisions).



Signposting

I See 8.2 Part 2 on Algorithms for Data Science



References

I Data structures:
I Cormen et al 2010 Introduction to Algorithms is very accessible

and recommended for data structures.
I Open DSA - Data Structures and Algorithms.

https://github.com/mejibyte/competitive_programming/blob/master/lib/Books/Introduction.to.Algorithms.3rd.Edition.Sep.2010.pdf
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/HashFuncExamp.html

