
Analysing Algorithms (Part 3 - Turing Machines)

Daniel Lawson — University of Bristol

Lecture 08.1.3 (v1.0.2)



Signposting

I Analysing Algorithms is split into three parts:
I Part 1: Motivation and Algorithmic Complexity
I Part 2: Examining algorithms
I Part 3: Turing Machines and Complexity Classes

I This is Part 3
I Thanks to Turing Fellow and Computer Scientist Dan Martin

for Tikz pictures and expertise



The Universal Turing Machine



High level description

I Consider a function f({x}d) where {x}d is a string of d bits (0
or 1)

I An algorithm for computing f is a set of rules such that we
compute f for any {x}d

I d is arbitrary
I The set of rules is fixed
I But can be arbitrarily complex and applied arbitrarily many

times
I Rules are made up of elementary operations:

1. Read a symbol of input
2. Read a symbol from a “memory”
3. Based on these, write a symbol to the “memory”
4. Either stop and output TRUE, FALSE, or choose a new rule



Formal description

I A Turing Machine is a 3-tuple1 (Q,Γ, δ):
I where Q,Γ are finite sets and:

I Q is the set of all states, containing special states:
I q0 ∈ Q is the start state
I qaccept ∈ Q is a set of accept states
I qreject ∈ Q is a set of reject state where qaccept 6= qreject

I Γ is the tape (“memory”) alphabet with ␣∈ Γ. The input space
is Σ ⊂ Γ excluding ␣(the blank space).

I δ : Q× Γ→ Q× Γ× {L,R} is a transition function.

1According to Arora and Barak Computational Complexity: A Modern
Approach. Hopcroft and Ullman Introduction to Automata Theory, Languages,
and Computation use a 7-tuple.

https://theory.cs.princeton.edu/complexity/book.pdf
https://theory.cs.princeton.edu/complexity/book.pdf
https://books.google.co.uk/books/about/Introduction_to_Automata_Theory_Language.html?id=G_BQAAAAMAAJ&redir_esc=y
https://books.google.co.uk/books/about/Introduction_to_Automata_Theory_Language.html?id=G_BQAAAAMAAJ&redir_esc=y


Turing Machine Example

0 1 1 0 1 0 . . .

q0

q0start q0 q1

qaccept qreject

0 0R

0 0R

1 1R 1 1R

L L



Turing Machine Example

0 1 1 0 1 0 . . .

q1

q0start q1q1

qaccept qreject

0 0R

0 0R

1 1R 1 1R

L L



Turing Machine Example

0 1 1 0 1 0 . . .

q1

q0start q1q1

qaccept qreject

0 0R

0 0R

1 1R 1 1R

L L



Turing Machine Example

0 1 1 0 1 0 . . .

q1

q0start q1q1

qaccept qreject

0 0R

0 0R

1 1R 1 1R

L L



Turing Machine Example

0 1 1 0 1 0 . . .

q0

q0start q0 q1

qaccept qreject

0 0R

0 0R

1 1R 1 1R

L L



Turing Machine Example

0 1 1 0 1 0 . . .

q0

q0start q0 q1

qaccept qreject

0 0R

0 0R

1 1R 1 1R

L L



Turing Machine Example

0 1 1 0 1 0 . . .

q1

q0start q1q1

qaccept qreject

0 0R

0 0R

1 1R 1 1R

L L



Turing Machine Example

0 1 1 0 1 0 . . .

qreject

q0start q1

qaccept qrejectqreject

0 0R

0 0R

1 1R 1 1R

L L



Turing Machine Equivalence

I Turing Machines with the following properties are all
equivalent:
I A binary only alphabet
I Multiple tapes
I A doubly infinite tape
I Designated input and/or output tapes
I Universal Turing Machines



Conceptual objects in algorithms

I We have now met at least the following classes of object:

1. Functions, which are conceptual mathematical objects
2. Algorithms, which are implementations that compute a

function, comprising:
a. Pseudocode, which are human-readable algorithms (though

can still be precise)
b. Computer code, which is a machine-readable algorithm,
c. Turing machines programmes, which are mathematical

representations of an algorithm.

I It takes proof to establish equivalence between classes of
Algorithm
I This is important for guaranteeing algorithms give the correct

output
I However, it has been proven that the correspondance between

these exists.



Using Turing Machines

I Turing Machines are a tool for proving properties of Algorithms.
I A wide class of computer architectures map to a Turing Machine
I This allows proofs to ignore implementation details
I Fo example: Programming language and CPU Chipset do not

matter (Finiteness excepting)
I We will not use Turing Machines in proofs!
I What you need to know:

I High level description of the Turing Machine
I That it is used to make algorithmic proofs by connecting a

Turing Machine to a particular algorithm
I They enable a wide class of otherwise disperate computer

architectures to be mapped and shown to be equivalent



Complexity Classes

I We often do not care about the details of a certain function
I We instead ask, “Is this function in a certain complexity class?”



Polynomial Time: P

I An algorithm with time complexity T (n) runs in Polynomial
Time if T (n) ∈ ∪∞

i=1O(ni).
I A language L ∈ P if there exists a Turing machine M such

that:
I M runs in polynomial time for all inputs
I ∀x ∈ L : M(x) = 1
I ∀x 6∈ L : M(x) = 0



Examples of algorithms in P

I Primality Testing: is a number x a prime number?
I Shortest Path in a graph: given two nodes, what is the

shortest path? (for example, Dijkstra’s Algorithm)
I Minimal Weighted Matching: Given n jobs on n machines

with cost matrix cij , how do we allocate jobs? Solvable as an
integer program.

I Pattern Matching: Asking, is a given pattern present in the
data? The runtime depends on the data structure and pattern,
but broad classes are solvable (e.g. graphs)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://sites.math.washington.edu/~raymonda/assignment.pdf
https://en.wikipedia.org/wiki/Pattern_matching
https://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R23.pdf


Non-Determinism

I A Non-Deterministic Turing machine is like a Turing
Machine, except δ can go to multiple states for the same input.

I When a choice of transition is given, the Non-Deterministic
Turing Machine “takes them all simultaneously’ ’.

I The machine accepts if any of the paths accept.

q0

q1
q3 3

q4 7

q2 q5 7



Non-Deterministic Polynomial Time: NP

I A language L ∈ NP if there exists a Non-Deterministic
Turing machine M such that:
I M runs in Polynomial Time for all inputs
I ∀x ∈ L : M(x) = 1
I ∀x 6∈ L : M(x) = 0



Examples of algorithms in NP

I Travelling salesman problem: Given a distance matrix
between n cities, is there a route between them all with total
distance less than D?

I Bin packing: Can you place n items into as few fixed-size bins
as possible?

I Boolean satisfiability: Is a set of boolean logic statements
true?

I Integer factorisation: Given a number x, what are its primes?



Data science consequences

I Having an algorithm is the easiest way to prove that f is in a
complexity class.
I It is hard to prove that a problem is not in P!

I Many exact problems seem to be NP.
I We can sometimes do very well with an approximate

algorithm in P. Examples:
I Travelling salesman: exactly solved for Euclidean distances,

Christofides and Serdyukov’s approximation using minimum
weight perfect matching

I Bin packing. . .
I Quantifying approximation error is therefore very important!



Bin packing problem



Bin packing: next fit



Bin packing: next fit



Bin packing: first fit decreasing



Bin packing: first fit decreasing



Addendum

I Complexity classes are not everything!
I Some examples of algorithms in P2:

I Max-Bisection is approximable to within a factor of 0.8776 in
around O(n10100) time

I Energy-driven linkage unfolding algorithm is at most
117607251220365312000n79(lmax/dmin(Θ0))26

I The classic “picture dropping problem” for how to wrap string
such that it that will drop when one nail is removed, with n
nails, can be solved in O(n43737)

I Approximate algorithms (accurate to within (1 + ε) often scale
badly, e.g. O(n1/ε)

2Stack Exchange Polynomial Time algorithms with huge exponent

https://cstheory.stackexchange.com/questions/6660/polynomial-time-algorithms-with-huge-exponent-constant


Wrapup

I Complexity classes are important
I They apply to space, time, communication, memory
I Often we require approximate algorithms:

I with better complexity
I and quantifiable peformance degradation

I However, empirical performance does not always match
asymptotic complexity



Reflection

I In what sense is a Turing Machine Universal?
I Can we think of Turing Machines as having complex, compound

states, or are we restricted to only simple bit operations?
I What role does Computational Complexity have in data

science?
I By the end of the course, you should:

I Understand the relationship between representations of
algorithms

I Be able to reason about the Turing Machine at a high level
I Be able to describe the classes P and NP, and place complexity

of algorithms in them



Signposting

I Next up: 8.2 Algorithms for Data Science



References

I Arora and Barak Computational Complexity: A Modern
Approach

I Hopcroft and Ullman Introduction to Automata Theory,
Languages, and Computation

I Annie Raymond’s Lecture notes on bipartite matching
I Fan et al 2010 Graph Pattern Matching: From Intractable to

Polynomial Time
I Stack Exchange Polynomial Time algorithms with huge

exponent

https://theory.cs.princeton.edu/complexity/book.pdf
https://theory.cs.princeton.edu/complexity/book.pdf
https://books.google.co.uk/books/about/Introduction_to_Automata_Theory_Language.html?id=G_BQAAAAMAAJ&redir_esc=y
https://books.google.co.uk/books/about/Introduction_to_Automata_Theory_Language.html?id=G_BQAAAAMAAJ&redir_esc=y
https://sites.math.washington.edu/~raymonda/assignment.pdf
https://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R23.pdf
https://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R23.pdf
https://cstheory.stackexchange.com/questions/6660/polynomial-time-algorithms-with-huge-exponent-constant
https://cstheory.stackexchange.com/questions/6660/polynomial-time-algorithms-with-huge-exponent-constant

