Analysing Algorithms (Part 3 - Turing Machines)

Daniel Lawson — University of Bristol

Lecture 08.1.3 (v1.0.2)

Signposting

\blacktriangleright Analysing Algorithms is split into three parts:

- ▶ Part 1: Motivation and Algorithmic Complexity
- \blacktriangleright Part 2: Examining algorithms
- ▶ Part 3: Turing Machines and Complexity Classes
- \blacktriangleright This is Part 3
- ▶ Thanks to Turing Fellow and Computer Scientist Dan Martin for Tikz pictures and expertise

The Universal Turing Machine

Turing machines

High level description

- \blacktriangleright Consider a function $f(\{x\}^d)$ where $\{x\}^d$ is a string of d bits (0 or $1)$
- \blacktriangleright An algorithm for computing f is a set of rules such that we compute f for any $\{x\}^d$
- \blacktriangleright d is arbitrary
- \blacktriangleright The set of rules is fixed
- \blacktriangleright But can be arbitrarily complex and applied arbitrarily many times
- **F** Rules are made up of elementary operations:
	- 1. Read a symbol of input
	- 2. Read a symbol from a "memory"
	- 3. Based on these, write a symbol to the "memory"
	- 4. Either stop and output TRUE, FALSE, or choose a new rule

Formal description

 1 According to Arora and Barak [Computational Complexity: A Modern](https://theory.cs.princeton.edu/complexity/book.pdf) [Approach.](https://theory.cs.princeton.edu/complexity/book.pdf) Hopcroft and Ullman [Introduction to Automata Theory, Languages,](https://books.google.co.uk/books/about/Introduction_to_Automata_Theory_Language.html?id=G_BQAAAAMAAJ&redir_esc=y) [and Computation](https://books.google.co.uk/books/about/Introduction_to_Automata_Theory_Language.html?id=G_BQAAAAMAAJ&redir_esc=y) use a 7-tuple.

Turing Machine Equivalence

- \blacktriangleright Turing Machines with the following properties are all equivalent:
	- \blacktriangleright A binary only alphabet
	- \blacktriangleright Multiple tapes
	- \blacktriangleright A doubly infinite tape
	- \blacktriangleright Designated input and/or output tapes
	- \blacktriangleright Universal Turing Machines

Conceptual objects in algorithms

- \blacktriangleright We have now met at least the following classes of object:
- 1. **Functions**, which are conceptual mathematical objects
- 2. **Algorithms**, which are implementations that compute a function, comprising:
	- a. **Pseudocode**, which are human-readable algorithms (though can still be precise)
	- b. **Computer code**, which is a machine-readable algorithm,
	- c. **Turing machines programmes**, which are mathematical representations of an algorithm.
- \blacktriangleright It takes proof to establish equivalence between classes of Algorithm
	- \blacktriangleright This is important for guaranteeing algorithms give the correct output
	- \blacktriangleright However, it has been proven that the correspondance between these exists.

Using Turing Machines

 \blacktriangleright Turing Machines are a tool for proving properties of Algorithms.

- \triangleright A wide class of computer architectures map to a Turing Machine
- **F** This allows proofs to **ignore** implementation details
- ▶ Fo example: Programming language and CPU Chipset do not matter (Finiteness excepting)
- \triangleright We will not use Turing Machines in proofs!
- \blacktriangleright What you need to know:
	- \blacktriangleright High level description of the Turing Machine
	- \blacktriangleright That it is used to make algorithmic proofs by connecting a Turing Machine to a particular algorithm
	- \blacktriangleright They enable a wide class of otherwise disperate computer architectures to be mapped and shown to be equivalent

Complexity Classes

 \triangleright We often do not care about the details of a certain function \blacktriangleright We instead ask, "Is this function in a certain complexity class?"

Polynomial Time: P

- An algorithm with time complexity $T(n)$ runs in **Polynomial Time** if $T(n) \in \bigcup_{i=1}^{\infty} \mathcal{O}(n^i)$.
- I A language *L* ∈ P if there exists a Turing machine *M* such that:
	- \blacktriangleright *M* runs in polynomial time for all inputs

$$
\blacktriangleright \forall x \in L : M(x) = 1
$$

$$
\blacktriangleright \forall x \notin L : M(x) = 0
$$

Examples of algorithms in P

- **P** Primality Testing: is a number x a prime number?
- **If** Shortest Path in a graph: given two nodes, what is the shortest path? (for example, [Dijkstra's Algorithm\)](https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm)
- ▶ Minimal Weighted Matching: Given *n* jobs on *n* machines with cost matrix c_{ij} , how do we allocate jobs? Solvable as an [integer program.](https://sites.math.washington.edu/~raymonda/assignment.pdf)
- **F** Pattern Matching: Asking, is a given [pattern present](https://en.wikipedia.org/wiki/Pattern_matching) in the data? The runtime depends on the data structure and pattern, but broad classes are solvable (e.g. [graphs\)](https://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R23.pdf)

Non-Determinism

- ▶ A Non-Deterministic Turing machine is like a Turing Machine, except δ can go to multiple states for the same input.
- \blacktriangleright When a choice of transition is given, the Non-Deterministic Turing Machine "takes them all simultaneously' '.
- \blacktriangleright The machine accepts if any of the paths accept.

Non-Deterministic Polynomial Time: NP

- I A language *L* ∈ NP if there exists a **Non-Deterministic** Turing machine *M* such that:
	- ▶ *M* runs in Polynomial Time for all inputs

$$
\blacktriangleright \forall x \in L : M(x) = 1
$$

$$
\blacktriangleright \; \forall x\not\in L: M(x)=0
$$

Examples of algorithms in NP

- **F** Travelling salesman problem: Given a distance matrix between *n* cities, is there a route between them all with total distance less than *D*?
- \triangleright Bin packing: Can you place *n* items into as few fixed-size bins as possible?
- ▶ Boolean satisfiability: Is a set of boolean logic statements true?
- Integer factorisation: Given a number x , what are its primes?

Data science consequences

 \blacktriangleright Having an algorithm is the easiest way to prove that f is in a complexity class.

It is hard to prove that a problem is not in $Pi!$

- \blacktriangleright Many exact problems seem to be NP.
- ▶ We can sometimes do very well with an **approximate algorithm** in P. Examples:
	- \blacktriangleright Travelling salesman: exactly solved for Euclidean distances, Christofides and Serdyukov's approximation using minimum weight perfect matching

 \blacktriangleright Bin packing...

 \blacktriangleright Quantifying approximation error is therefore very important!

Bin packing problem

Bin packing: next fit

Bin packing: next fit

Next fit runs in $O(n)$ time but how good is it?

- Let $fill(i)$ be the sum of item sizes in bin i and b the number of non-empty bins (using Next fit)
- Observe that $fill(2i 1) + fill(2i) > 1$ (for $1 \leq 2i \leq b$)

$$
\text{so} \quad \lfloor b/2 \rfloor < \sum_{1 \le 2i \le b} \text{fill}(2i-1) + \text{fill}(2i) \le I \le \text{Opt}
$$

Next fit is an 2-approximation for bin packing which runs in linear time **CS 301 APPROXIMATION ALGORITHMS** Benjamin Sach

Bin packing: first fit decreasing

Bin packing: first fit decreasing

CS 301 APPROXIMATION ALGORITHMS

Benjamin Sach

Addendum

 \triangleright Complexity classes are not everything!

Some examples of algorithms in P^2 :

- Max-Bisection is approximable to within a factor of 0.8776 in around $O(n^{10^{100}})$ time
- \blacktriangleright Energy-driven linkage unfolding algorithm is at most $117607251220365312000n^{79}(l_{max}/d_{min}(\Theta_0))^{26}$
- \triangleright The classic "picture dropping problem" for how to wrap string such that it that will drop when one nail is removed, with *n* nails, can be solved in $O(n^{43737})$
- Approximate algorithms (accurate to within $(1 + \epsilon)$ often scale badly, e.g. $O(n^{1/\epsilon})$

²Stack Exchange [Polynomial Time algorithms with huge exponent](https://cstheory.stackexchange.com/questions/6660/polynomial-time-algorithms-with-huge-exponent-constant)

Wrapup

- \blacktriangleright Complexity classes are important
- \blacktriangleright They apply to space, time, communication, memory
- \triangleright Often we require approximate algorithms:
	- \blacktriangleright with better complexity
	- \blacktriangleright and quantifiable peformance degradation
- \blacktriangleright However, empirical performance does not always match asymptotic complexity

Reflection

- \blacktriangleright In what sense is a Turing Machine Universal?
- \blacktriangleright Can we think of Turing Machines as having complex, compound states, or are we restricted to only simple bit operations?
- \blacktriangleright What role does Computational Complexity have in data science?
- \blacktriangleright By the end of the course, you should:
	- \blacktriangleright Understand the relationship between representations of algorithms
	- \blacktriangleright Be able to reason about the Turing Machine at a high level
	- \triangleright Be able to describe the classes P and NP, and place complexity of algorithms in them

▶ Next up: 8.2 Algorithms for Data Science

References

- ▶ Arora and Barak [Computational Complexity: A Modern](https://theory.cs.princeton.edu/complexity/book.pdf) [Approach](https://theory.cs.princeton.edu/complexity/book.pdf)
- \blacktriangleright Hopcroft and Ullman [Introduction to Automata Theory,](https://books.google.co.uk/books/about/Introduction_to_Automata_Theory_Language.html?id=G_BQAAAAMAAJ&redir_esc=y) [Languages, and Computation](https://books.google.co.uk/books/about/Introduction_to_Automata_Theory_Language.html?id=G_BQAAAAMAAJ&redir_esc=y)
- ▶ Annie Raymond's [Lecture notes on bipartite matching](https://sites.math.washington.edu/~raymonda/assignment.pdf)
- ▶ Fan et al 2010 [Graph Pattern Matching: From Intractable to](https://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R23.pdf) [Polynomial Time](https://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R23.pdf)
- \triangleright Stack Exchange [Polynomial Time algorithms with huge](https://cstheory.stackexchange.com/questions/6660/polynomial-time-algorithms-with-huge-exponent-constant) [exponent](https://cstheory.stackexchange.com/questions/6660/polynomial-time-algorithms-with-huge-exponent-constant)