
Analysing Algorithms (Part 2 - Examining
Algorithms)

Daniel Lawson — University of Bristol

Lecture 08.1.2 (v1.0.2)



Signposting

I Analysing Algorithms is split into three parts:
I Part 1: Motivation and Algorithmic Complexity
I Part 2: Examining algorithms
I Part 3: Turing Machines and Complexity Classes

I This is Part 2
I Thanks to Turing Fellow and Computer Scientist Dan Martin

for Tikz pictures and expertise



Runtime vs Complexity - motivation

I Consider our algorithm run on data D1:
I In different programming languages, compile arguments and

hardware
I What can be said in general?



Algorithm Example (1)

I What is the complexity of the following algorithm?
procedure Example(a, b, n)

i← 1
while i ≤ n do

a← f1(b, n)
b← f2(a, n)
i← i + 1

end while
return b

end procedure
I fi(a, n) has runtime Ti(n)
I Inside loop is O(T1(n) + T2(n))
I Total O[n(T1(n) + T2(n))]



Algorithm Example (2)

I Compare to the following algorithm?
procedure Example(a, b, n)

i← 1
while i ≤ n do

a← f1(b, n)
b← f2(a, n)
i← 2 · i

end while
return b

end procedure
I Inside loop is O(T1(n) + T2(n))
I Total O[log(n)(T1(n) + T2(n))]



Sorting examples

I We have some data: 1, 4, 6, 2, 3, 7, 5, · · ·
I We want to sort the data into ascending order:

1, 2, 3, 4, 5, 6, 7, · · ·
I What is the best1 algorithm?

I Insertion sort is Θ(n2), but operates in-place.
I Merge sort is Θ(n log(n)), but memory requirements grow

with data size.
I Heap sort is Θ(n log(n)) and sorts in place.
I Quick sort is Θ(n2), but Θ(n log(n)) expected time, and is

often fastest in practice.
I Counting sort allows array indices to be sorted in Θ(n) by

exploiting knowledge that all integers are present.
I Bucket sort is Θ(n2), though Θ(n) average case (if data are

Uniform!)

1Cormen et al 2010 Introduction to Algorithms

https://github.com/mejibyte/competitive_programming/blob/master/lib/Books/Introduction.to.Algorithms.3rd.Edition.Sep.2010.pdf


Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure



Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure

What if we can choose the
median element of A?

T (n)
= 2T (n

2 ) + n

= 2(2T (n

4 ) + n

2 ) + n

= . . .

= 2log nT (1) +
log n∑
i=1

n

= Θ(n log n)



Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure

What if we can choose the
median element of A?

T (n)

= 2T (n

2 ) + n

= 2(2T (n

4 ) + n

2 ) + n

= . . .

= 2log nT (1) +
log n∑
i=1

n

= Θ(n log n)



Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure

What if we can choose the
median element of A?

T (n)
= 2T (n

2 ) + n

= 2(2T (n

4 ) + n

2 ) + n

= . . .

= 2log nT (1) +
log n∑
i=1

n

= Θ(n log n)



Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure

What if we can choose the
median element of A?

T (n)
= 2T (n

2 ) + n

= 2(2T (n

4 ) + n

2 ) + n

= . . .

= 2log nT (1) +
log n∑
i=1

n

= Θ(n log n)



Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure

What if we can choose the
median element of A?

T (n)
= 2T (n

2 ) + n

= 2(2T (n

4 ) + n

2 ) + n

= . . .

= 2log nT (1) +
log n∑
i=1

n

= Θ(n log n)



Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure

What if we can choose the
median element of A?

T (n)
= 2T (n

2 ) + n

= 2(2T (n

4 ) + n

2 ) + n

= . . .

= 2log nT (1) +
log n∑
i=1

n

= Θ(n log n)



Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure

What if we can choose the
median element of A?

T (n)
= 2T (n

2 ) + n

= 2(2T (n

4 ) + n

2 ) + n

= . . .

= 2log nT (1) +
log n∑
i=1

n

= Θ(n log n)



Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure

What if we always choose
the largest element of A?

T (n)
= T (n− 1) + n

= (T (n− 2) + n) + n

= . . .

= T (1) +
n∑

i=1
i

= n(n− 1)/2 = Θ(n2)



Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure

What if we always choose
the largest element of A?

T (n)

= T (n− 1) + n

= (T (n− 2) + n) + n

= . . .

= T (1) +
n∑

i=1
i

= n(n− 1)/2 = Θ(n2)



Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure

What if we always choose
the largest element of A?

T (n)
= T (n− 1) + n

= (T (n− 2) + n) + n

= . . .

= T (1) +
n∑

i=1
i

= n(n− 1)/2 = Θ(n2)



Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure

What if we always choose
the largest element of A?

T (n)
= T (n− 1) + n

= (T (n− 2) + n) + n

= . . .

= T (1) +
n∑

i=1
i

= n(n− 1)/2 = Θ(n2)



Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure

What if we always choose
the largest element of A?

T (n)
= T (n− 1) + n

= (T (n− 2) + n) + n

= . . .

= T (1) +
n∑

i=1
i

= n(n− 1)/2 = Θ(n2)



Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure

What if we always choose
the largest element of A?

T (n)
= T (n− 1) + n

= (T (n− 2) + n) + n

= . . .

= T (1) +
n∑

i=1
i

= n(n− 1)/2 = Θ(n2)



Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure

What if we always choose
the largest element of A?

T (n)
= T (n− 1) + n

= (T (n− 2) + n) + n

= . . .

= T (1) +
n∑

i=1
i

= n(n− 1)/2 = Θ(n2)



Other types of complexity

I Complexity questions are primarily asked about:
I Computation (time)
I Space (memory)
I Communication (data transfer)

I They are all studied analogously - it is the unit of counting that
changes

I Despite that, the theory is quite different



Space complexity

I Simply the amount of memory that an algorithm needs
I You can calculate it simply by adding the memory allocations
I Space required is additional to the input, which is not

counted - this can conceptually not be stored at all, as in
e.g. streaming algorithms

I Formally defined in terms of the Turing Machine (8.1.3)
I It can often be traded for time complexity, e.g. by storing

intermediate results vs revisiting the calculation
I For a Data Scientist, this trade off is critical!
I We use the same notation



Space complexity example (1)

I Problem: Find x, y in X s.t. x + y = T (known to exist)
I Solution 1:

import heapq
heapq.heapsort(X)
i=0;j=n-1;
while(X[i]+X[j]!=T):

if X[i]+X[j]<T:
i=i+1

else:
j=j-1

I Heapsort has O(1) space complexity
I Therefore the whole algorithm is O(1) in space
I And time complexity O(n log(n) + n) = O(n log(n))



Space complexity example (2)

I Find x, y in X s.t. x + y = T (known to exist)
I Solution 2:

D={}
for i in range(len(X)):

D[T-X[i]]=i
for x in X:

y=T-x
if y in D:

return X[D[y]],x

I This is O(n) in space
I Hash lookups are O(1) average case complexity (O(n) worst

case - which does not apply here!)
I So this algorithm is O(n) in time too



Communication Complexity

I Alice knows x ∈ X, Bob knows y ∈ Y
I Together they want to compute f(x, y) where f ∈ X ×Y → Z
I Via a pre-arranged protocol P determining what they send
I The communication cost is the number of bits sent 2

2Raznorov 2015 Communication Complexity Lecture

https://people.csail.mit.edu/rrw/cs154-2015/comm-c-lecture.pdf


Communication Complexity

I The Overall cost of P is C(P ) = maxx,y[P (x, y)], i.e. the
maximum possible cost for all data

I The Communication complexity of f is
C(f) = minP ∈P(C[P (x, y)])

I It is the minimum number of bits needed to compute f(x, y)
for any x, y

I Communication Complexity Theory describes C(f), typically by
finding bounds (upper and lower) for a given f
I Again typically as a function of the size of x and y, and always

for some well defined spaces X and Y .
I Note that there is a trivial bound of n + 1 for transferring all

the data! (and then the answer back)



Communication Complexity Examples

I f(x, y) = Parity([x, y])
I Parity=mod2(

∑n
i=1 xi)

I C(f(x, y)) = 2 because Alice calculates the Parity of x, Bob
the Parity of y, and they each communicate their own parity

I f(x, y) = Equality(x, y)
I i.e. 1 if xi = yi ∀i, and 0 otherwise
I C(f(x, y)) = n because every bit must be compared

I Typically approximate algorithms allow dramatically lower
complexity
I All the interesting theory is in this space



What is communication complexity theory good for?

I There are lots of immediate applications
I Optimisation of computer networks
I Parallel algorithms: communication between multiple cores on

a CPU, or nodes of a cluster
I And basically anything involving the internet!
I Especially differential privacy (Block 12)

I There are many more less immediate applications
I Particularly as a tool for algorithm and data structure lower

bounds



Reflection

I What are the main subjects of complexity theory, and in which
ways are they similar?

I By the end of the course, students should be able to:
I Define three subjects of complexity theory
I Apply each to simple algorithms, including compound algorithms
I Reason about their value at a high level



Signposting

I Next up: Part 3: Turing Machines
I References:

I Cormen et al 2010 Introduction to Algorithms
I Toniann Pitassi Lecture on Communication Complexity:

Applications and New Directions
I Raznorov 2015 Communication Complexity Lecture
I Arora and Barak Computational Complexity: A Modern

Approach
I One of few places to give space complexity much time (its

always the poor cousin)

https://github.com/mejibyte/competitive_programming/blob/master/lib/Books/Introduction.to.Algorithms.3rd.Edition.Sep.2010.pdf
https://www.cs.toronto.edu/~toni/Courses/CommComplexity2014/Lectures/lecture1.pdf
https://www.cs.toronto.edu/~toni/Courses/CommComplexity2014/Lectures/lecture1.pdf
https://people.csail.mit.edu/rrw/cs154-2015/comm-c-lecture.pdf
https://theory.cs.princeton.edu/complexity/book.pdf
https://theory.cs.princeton.edu/complexity/book.pdf

