
Analysing Algorithms (Part 1 - Complexity
notation)

Daniel Lawson — University of Bristol

Lecture 08.1.1 (v1.0.3)



Signposting

I This set of lectures is about the conceptual framework for
algorithms.

I Analysing Algorithms is split into three parts:
I Part 1: Motivation and Algorithmic Complexity
I Part 2: Examining algorithms
I Part 3: Turing Machines and Complexity Classes

I This is Part 1
I We examine important algorithmic building blocks in 8.2.
I Thanks to Turing Fellow and Computer Scientist Dan Martin

for Tikz pictures and expertise



ILOs

I ILO2 Be able to use and apply basic machine learning tools
I ILO4 Be able to use high throughput computing infrastructure

and understand appropriate algorithms



Runtime - motivation

I Consider our algorithm run on data D1:
I Different programming languages/compiler/hardware
I How do we predict its runtime elsewhere?



Why study algorithms?

I Algorithms underlie every machine-learning method.
I Theoretical statements about algorithms can be made,

including:
I How long does an algorithm take to run?
I What guarantees can be made about the answer an algorithm

returns?
I In some cases, carefully chosen algorithms can achieve

either perfect or usefully good performance at a vanishing
fraction of the run time of a naive implementation.

I This can lead to a solution on a single machine that is
superior to that of a massively parallel implementation using
distributed computing.



Algorithmic concerns

I We typically care about:
I How long does the algorithm run for? Under which

circumstances?
I How do they trade off runtime and memory requirement?

I Some special values include in-place methods (which have a
constant memory requirement) and streaming methods which
visit the data exactly once each (usually with a constant-sized
memory).

I Proofs typically describe the scaling of these properties, but in
practice the constants are very important!



Algorithmic complexity: Big O Notation

I O(n): An upper bound as a function of data size n
I g(n) = O(f(n)):

I ∃n0, k ∈ N such that:
I ∀n ≥ n0:
I g(n) ≤ k · f(n)



Algorithmic complexity: Big Omega Notation

I Ω(n): A lower bound a function of data size n
I g(n) = Ω(f(n)):

I ∃n0, k ∈ N such that:
I ∀n ≥ n0:
I g(n) ≥ k · f(n)



Algorithmic complexity: Big Theta Notation

I Θ(n): A tight bound as a function of data size n
I g(n) = Θ(f(n)):

I ∃n0, k1, k2 ∈ N such that:
I ∀n ≥ n0:
I k1 · f(n) ≤ g(n) ≤ k2 · f(n)

I i.e. the bound is strict.



Complexity examples

I n ∈ O(n2)
I n ∈ O(n) as well
I n ∈ Ω(n)

I 2n2 + n+ 10 ∈ O(n2)
I log(n) ∈ O(nε) for all ε > 0
I If f(n) ∈ O(g(n)) then g(n) ∈ Ω(f(n))
I If f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)) then f(n) ∈ Θ(g(n))
I If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) then
f1(n) · f2(n) ∈ O(g1(n) · g2(n))

I If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) then
f1(n) + f2(n) ∈ O(max(g1(n), g2(n)))

I 2n2 + 3n+ 1 = 2n2 + Θ(n) = Θ(n2)



Algorithmic complexity: Probabilistic Analysis

I Sometimes we don’t want the worst-case behaviour out of all
possible inputs

I In these scenarios average-case run time is often reported
I This is typically the average over the entire input space
I This should make the statistician in you concerned!

I Randomized algorithms are also important
I In these the answer may be random, and take a random amount

of time, for a given input!
I e.g. MCMC, etc
I Again the expected run time is often reported

I We can discuss Θ, Ω and O of the expected runtime
I Clearly the distribution of the input data is important
I Some worst-case scenarios have “measure 0” (i.e. will never

occur in practice)



Complexity and constants

I Consider the following functions:

import time
def constant_fun(n,k):

time.sleep(k * k);
def linear_fun(n,k):

for i in range(n):
time.sleep(1);

I Clearly linear_fun is faster for n < k2. We need to take into
account k and whether it scales with n.

I In practice k is often truly a constant but can be any scale
compared to n. The accounting therefore needs to retain it.

I Example: SVD is O(min(mn2,m2n))
I Complexity classes only describe asymptotic behaviour for

large n



Divide and conquer

I One of the most popular strategies is Divide and Conquer, in
which we make many sub-problems, each of which is solvable.

I This is typically valuable for parallellism
I It also makes sense to apply the algorithm recursively.

I In which case we obtain expressions like:

T (n) = aT (n/k) +D(n) if n ≥ c,

I and T (n) = Θ(1) otherwise.
I This recursion is a relatively straightforward infinite sum

(exercises) and leads to T (n) = Θ(n logk(n))

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm


Other key concepts

I Worst case cost conditions: can require care when looking up
the answer.
I For example, some data structures have O(n) lookup cost if the

data are missing, but much better if the data are present.
I Also some costs are predictable and rare, leading to. . .

I Amortised cost: The long term, average worst case cost,
which is often better than the single case cost.
I For example, some data structures must be periodically rebuilt

when they get too big, an expensive action. But this is done
rarely by construction.



Reflection

I Does it make sense to say that “O(f(n)) is at least n2”?
I In what sense would it matter in a recursive binary algorithm if
n was not in 2k?

I How do complexity statements combine?
I By the end of the course, you should:

I Be able to compute with Θ, Ω and O
I Be able to reason at a high level about algorithm value



Signposting

I Next up: Analysing Algorithms Part 2: Examining algorithms
I References:

I Wikipedia Divide and Conquer
I Cormen et al 2010 Introduction to Algorithms is very accessible

and recommended.
I Arora and Barak 2007 Computational Complexity: A Modern

Approach is useful but more advanced.

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm
https://github.com/mejibyte/competitive_programming/blob/master/lib/Books/Introduction.to.Algorithms.3rd.Edition.Sep.2010.pdf
https://theory.cs.princeton.edu/complexity/book.pdf
https://theory.cs.princeton.edu/complexity/book.pdf

