
Applied Topic Models

Daniel Lawson — University of Bristol

Lecture 07.2 (v1.0.1)

Signposting

I This is a continuation of Topic Models, now with a focus on
how we make them work in practice.
I This is not trivial and includes a lot of tradecraft.
I Not all of this is language agnostic.
I Performance and generalisability can be improved dramatically

by tailoring to the target data.

ILOs

I ILO1 Be able to access and process cyber security data into a
format suitable for mathematical reasoning

I ILO2 Be able to use and apply basic machine learning tools

Data Quality

Garbage in - GarbaHTFGNK KGDFgfdggggggg

Cleaning (Text) data

I This course is about cyber data.
I Topic modelling can be applied to many cyber datasets without

there being actual text.
I However, some cyber data contains text, and some cyber

problems involve text.
I For example, detecting phishing.

I So we’ll cover the basics of text cleaning.
I You need to know the basics of regular expressions to cut the

text down to the core text.
I Regular expressions are a very general syntax for specifying

search patterns.

Data cleaning pipeline

I Remove the punctuation marks: ‘,.;:?!’
I Remove the stop-words, like “I”, “and”, and “the”
I Remove too common words
I Standardize spacing: double spaces, tabs, newlines
I What do you want to do with special words and characters?

e.g. Twitter “rt”, “@user”, “#hashtag!”
I Correct cleaning is context specific.

I Legal documents are different to tweets, html, blog posts, etc!
I It is unlikely that the same subject discussed in two different

fora will look the same to a topic model!

Data from unusual sources

I Use a converter to ‘plain text’:
I textract:

textract for converting from a wide
range of sources including MS and pdf
import textract
text = textract.process("path/to/file.extension")

I pdfminer:
dedicated tool: should be better performance
import pdfminer
convert_pdf_to_txt('file name')

https://textract.readthedocs.io/en/stable/
https://pypi.org/project/pdfminer/

Data from unusual sources

I Use a converter to ‘plain text’:
I textract:

textract for converting from a wide
range of sources including MS and pdf
import textract
text = textract.process("path/to/file.extension")

I pdfminer:
dedicated tool: should be better performance
import pdfminer
convert_pdf_to_txt('file name')

https://textract.readthedocs.io/en/stable/
https://pypi.org/project/pdfminer/

Cleaning (Text) data

I Identify or remove special words (emoticons, hashtags),
I Remove common words (“stop words”),
I Lemmatise or stem (standardize endings),
I Where multiple meanings exist, use context to deduce correct

one (noun/verb/adjective?).
I We cover these details in the workshop.

Regexp

I Essential for pre-cleaning your data.
I See the Python Documentation.
I Regular expressions can contain both special and ordinary

characters.
I Most ordinary characters, like ‘A’, ‘a’, or ‘0’, are the simplest

regular expressions; they simply match themselves.
I Some characters, like ‘|’ or ‘(’, are special.
I Special characters either stand for classes of ordinary

characters, or affect how the regular expressions around them
are interpreted.

I Repetition qualifiers (*, +, ?, {m,n}, etc) define how many
characters are wanted.

https://docs.python.org/3/library/re.html

Regexp in python

I Basic usage:
match = re.search(pattern, string)
if match:

process(match)

I Many more complex possibilities exist!
I Search/Replace/Group/Split etc.
I Basic usage is massively helpful.
I Lookup more complex problems.

Regexp special characters
I \: Escape special character.
I . (dot): match any character

I r"me.": matches the string men or met but not me at the end
of a word.

I ˆ (caret): start of string
I r"ˆme": matches me at the start only (meaning)

I $ (dollar): end of string/final character before newline
I r"me$": matches me at the end only (biome)

I * (star): 0 or more matches of preceding RE
I r"file.*\.txt": matches all strings of the form “file”,

anything, and “.txt”
I + (plus): 1 or more matches of preceding RE

I r"file.+\.txt": matches “file”, any one character, and “.txt”
I []: Set of characters.

I r"file[0-9]+\.txt": matches forms like “file5.txt”
I {m}: match m copies of receding RE

I r"file[0-9]{3}\.txt": matches forms like “file005.txt”

Example of cleaning (Text) data with regexp

import re
def preprocessor(text):

text = re.sub('<[ˆ>]*>', '', text)
emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)',

text)
text = (re.sub('[\W]+', ' ', text.lower()) +

' '.join(emoticons).replace('-', ''))
return text

Quantifying solutions
I There are many ways to quantify how good a particular LDA

model is. The most popular are:
I Perplexity: the perplexity is 2−H(D) where
H(D) =

∑T
t=1 log(p(t|θd))

I p(t|θd) =
∑V

v=1 θd(v)p(t|v) uses the model-learned topics V
for the (held out!) document d with topic distribution θd.

I It is the entropy of term t (normally reported as the average
per-word).

I Perplexity is low (better) when each word appears in only one
topic.

I Perplexity is high when words are distributed across topics.
I Coherence: a measure of how often pairs of words appear

together. there are two ways to examine this:
I intrinsic coherence: called u_mass, this compares within a

corpus.
I extrinsic coherence: called c_v, this compares to some

standard reference documents.
I Neither is particularly consistent with human judgement1.

1Chang, Jonathan, Jordan Boyd-Graber, Sean Gerrish, Chong Wang and
David M. Blei. 2009. Reading Tea Leaves: How Humans Interpret Topic Models.
NIPS.

http://umiacs.umd.edu/~jbg/docs/nips2009-rtl.pdf

Coherence

I The coherence is based on the score 2 (defined next):

Coherence(V) =
∑

(ti,tj)∈V

score(ti, tj)

I Where V is a topic, and ti, tj are word pairs.
I In both cases we use a regulariser ε.

I ε = 1 is natural but not obligatory.

2Stevens, Kegelmeyer, Andrzejewsk and Buttler Exploring Topic Coherence
over many models and many topics

https://www.aclweb.org/anthology/D/D12/D12-1087.pdf
https://www.aclweb.org/anthology/D/D12/D12-1087.pdf

intrinsic coherence

I Using the score function:

u_mass(vi, vj) = log
(
p(vi, vj , ε)
p(vi)p(vj)

)

I i.e. we compare the probability that the words co-occur in a
document with their relative frequencies.

I ε assigns non-zero weight to word pairs that do not occur
together in a document.

extrinsic coherence

I Using the score function:

c_v(vi, vj) = log
(
D(vi, vj , ε)
D(vj)

)

I where D counts documents that contain the word(s);
I i.e. we compare the frequency in which words co-occur in an

external dataset, compared to their external frequency.

Reflection

I To what extend can NLP be considered a supervised task?
I What do the scores quantify? How do you externally verify

their performance?
I What challenges appear in processing languages that lack word

standardization?
I How does this extend to non-language applications of topic

modelling?
I By the end of the course, you should:

I Be able to apply topic models to both cyber security data and
text data,

I Understand its uses and limitations at a high level.

Signposting

I Next lecture: Workshop on NLP.
I Next block: Algorithms Every Data Scientist Should Know:

I Sampling,
I Filtering,
I Sketching,
I And more!

References (1)

Data science topic modelling
I Preparing Data for Topic Modelling
I NLP for legal documents
I Machine-Learning-In-Law github repo

Judging topic models
I Chang, Jonathan, Jordan Boyd-Graber, Sean Gerrish, Chong

Wang and David M. Blei. 2009. Reading Tea Leaves: How
Humans Interpret Topic Models. NIPS.

I Stevens, Kegelmeyer, Andrzejewsk and Buttler Exploring Topic
Coherence over many models and many topics

https://publish.illinois.edu/commonsknowledge/2017/11/16/preparing-your-data-for-topic-modeling/
https://towardsdatascience.com/nlp-for-topic-modeling-summarization-of-legal-documents-8c89393b1534
https://github.com/chibueze07/Machine-Learning-In-Law/tree/master
http://umiacs.umd.edu/~jbg/docs/nips2009-rtl.pdf
http://umiacs.umd.edu/~jbg/docs/nips2009-rtl.pdf
https://www.aclweb.org/anthology/D/D12/D12-1087.pdf
https://www.aclweb.org/anthology/D/D12/D12-1087.pdf

References (2)

Data sources
I Kaggle dataset for fake news
I Intelligence and Security Informatics Data Sets
I Vizsec security data collection
I Threatminer cyber data with NLP
I Phishing data corpus with paper A Machine Learning approach

towards Phishing Email Detection.

https://www.kaggle.com/nupursh/nlp-in-r-topic-modelling-for-fake-news
https://www.azsecure-data.org/
https://vizsec.org/data/
https://www.threatminer.org/
https://monkey.org/~jose/phishing/phishing-2018
http://ceur-ws.org/Vol-2124/paper_7.pdf
http://ceur-ws.org/Vol-2124/paper_7.pdf

