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Signposting

» Bayesian methodology separates “simple” topic models from
Latent Dirichlet Allocation
» Bayesian methodology is a huge and important area
» \We are covering it very lightly
» This is to give the background for:
> Bayes Rule
» Signposting Bayesian tools
» Understanding Latent Dirichlet Allocation
» Regularisation



A brief aside into Bayesian Modelling

» Bayesian Models are generative, that is, you can simulate
data from them.
» They consist of:

» a prior Pr(#), that is conceptualised as either a model, or as
beliefs,
> and the likelihood Pr(z|0), that depends on the data.

» The task is to integrate over the prior, to find the posterior
probability using Bayes’ theorem:

Pr(x|0) Pr(6)

Pr(0|x) = Pr(z)

» In general Pr(z) is hard to evaluate but there are methods to
avoid doing this.



Example of Bayes Theorem
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One important application of Bayes' theorem is False
discovery.
> Imagine that we made a Bad-Guy-Detector (TM) which has a
99% chance of seeing a malicious attack if present (6 = 1)...
> But a 0.01% chance of declaring an attack when it isn't (6 = 0).
» Let p be the true frequency of malicious attacks.
» If our BGD activates (x = 1), what is the probability of a true
attack?
Probability of the data: Pr(z = 1) = 0.99p + 0.0001(1 — p)
Probability of an attack: Pr(6 = 1|z =1) = 0.99p/ Pr(z = 1)
If p=0.001 then Pr(f = 1|z =1) = 0.9
If p=0.0001 then Pr(f = 1|z =1) ~ 0.5
If p=0.00001 then Pr(f = 1|z = 1) ~ 0.09
If p =0.000001 then Pr(f = 1|z = 1) ~ 0.001



Etymology of Bayes: Conjugacy and tractability

» Bayesian Inference techniques can be used to integrate out
model parameters:

» A conjugate model allows parameters to be integrated out
analytically: i.e. you can compute Pr(z) and therefore Pr(6|z)

» Monte-Carlo methods allow sampling of posterior
parameters Pr(f|x) conditional on the data without ever
evaluating Pr(x)

» Some models are doubly intractable! meaning that you
cannot compute Pr(z|f) and they cannot be sampled.

» For example, Markov Random Fields.
» Special methods are needed for them, for example,
Approximate Bayesian Computation

'Murray, Ghahramani, and MacKay. “MCMC for doubly-intractable
distributions.” arXiv preprint arXiv:1206.6848 (2012).



Conjugate models

» Conjugate models take the form of a known distribution for
the Prior, that can be updated through observations to the
same distribution but with new parameters.

» Updating conjugate models with new data is straightforward:
we can do it online by visiting each datapoint only once.

» We can also form a low-dimensional summary that captures
everything about an observation.

» This means we can interpret the prior in terms of pseudo
observations:

P either data we have seen already,
» or data we pretend to have seen in order to specify a prior
distribution.

» The set of possible conjugate models is limited, though they
can often be used as a part of a larger model.

» For example, we might have a set of conjugate models to
summarise several different data sources on a stream, which we
then combine into a full, more costly model containing only a
few non-conjugate parameters.



Conjugate model example

» Example: The Beta-Bernoulli model for binary outcomes.
» In the Bernoulli model p(x|p) we flip a (biased) coin x which is
heads (x = 1) with some unknown probability p.
> If we parameterise the prior p(p) = Beta(q, ), with
p=a/(a+p),
» then after n observations p(p|{z}) = Beta(o/, 8') =
Beta(a+ Y iy 2, B+ (n— D0, x;)),
» i.e. a was our prior number of successes (heads) and § our prior
number of failures (tails).
» All discrete distributions with conjugate priors have this
interpretation!
» Continuous distributions also contain a concept of the number
of observations used to form the prior estimate.
» There is a super useful list of conjugate priors and
interpretations on the Conjugate Prior Wikipedia page!



https://en.wikipedia.org/wiki/Conjugate_prior

Markov Chain Monte Carlo (MCMC)

» MCMC? allows sampling from a posterior when we can
evaluate the likelihood and the prior at any parameter value,
but not integrate it.

» It performs a search of parameter space, comparing the
posterior at the current point to the posterior at a proposed
point, taking into account the probability of moving between
the points in either direction.

» (Somewhat surprisingly) the set of samples taken over many
iterations resembles a random sample from the posterior.

» This can be used to make predictions, estimate parameters, etc,
by averaging over the samples.

> |t is relatively costly - the number of likelihood evaluations
required to obtain convergence is hard to predict.

> It is often a relatively good search algorithm for hard
posteriors! Though careful choice of proposals is then needed.

2e.g. Gamerman and Hedibert. Markov chain Monte Carlo: stochastic
simulation for Bayesian inference.



Tools for Bayesian Modelling using MCMC

» MCMC is very popular because it is straightforward to
implement many models using it.

» Some important tools for Bayesian Inference allow models to
be specified, an automatically do the inference for you using
MCMC:

»> OpenBUGS (http://openbugs.net/w/FrontPage)
» JAGS (http://mcmc-jags.sourceforge.net/)
» STAN (http://mc-stan.org/)

» STAN is the current darling because it uses a clever method to
sample, called the “no U-turn sampler” (NUTS) which searches
parameter space with Hamiltonian Monte Carlo, a method
that gives the search “momentum™.



Sequential Monte Carlo (SMC) for filtering problems

» Filters are a class of model that take a sample of parameters
and move them (through some observed space such as time) to
track a changing distribution, for example, estimates of where
an object is over time.

» Hidden Markov Models (HMMs) do this analytically for
discrete parameter spaces, where the observation is a random
variable depending on the true state of a system.

» The Kalman Filter is famous as it can be solved analytically by
tracking a Normal distribution estimate of the location.

» Sequential Monte Carlo is a tool for implementing a wide range
of Bayesian models.

» It was pioneered® and been integrated into MCMC# in Bristol.

®Doucet, Godsill, and Andrieu. “On sequential Monte Carlo sampling
methods for Bayesian filtering.” Statistics and computing 10.3 (2000): 197-208.

*Andrieu, Doucet, and Holenstein Particle Markov chain Monte Carlo
methods



https://www.stats.ox.ac.uk/~doucet/andrieu_doucet_holenstein_PMCMC.pdf
https://www.stats.ox.ac.uk/~doucet/andrieu_doucet_holenstein_PMCMC.pdf

Approximate Bayesian Computation (ABC)

» ABC? is an approach to allow inference when the Likelihood
cannot be evaluated, either because it is too costly, or the
model is not described in terms of probabilities.

> It works by:

» Simulating data from a model,

» Creating a set of summary statistics from the data,

» Comparing the summary statistics of the simulated data to the
real data,

» Accepting parameters that generate sufficiently close data.

» It can be sampled using a simple rejection algorithm, MCMC,
or SMC.

> [t is a hot topic to use Neural Networks to make ABC summary
statistics.

> It is relatively computationally costly unless the simulation is
fast.

®Beaumont, Zhang, and Balding. “Approximate Bayesian computation in
population genetics.” Genetics 162.4 (2002): 2025-2035.



Bayesian Modelling in Machine Learning

» Machine Learning techniques need to be fast, so concentrate
on conjugate models, or approximations that are the nearest
conjugate model.

» Variational methods® are extremely important for this.

» The integration is turned into an optimisation problem,
searching for the parameters that best approximate the whole
posterior distribution.

®Blei and Jordan. “Variational inference for Dirichlet process mixtures.”
Bayesian analysis 1.1 (2006): 121-143.



Variational methods insight

» Seeking the distribution ) that best approximates the true
ny

distribution P, measured in “KL-Divergence

"http://blog.evjang.com/2016/08 /variational-bayes.html



Motivating Regularisation and Smoothing

» Taking the maximum likelihood estimate can sometimes lead
to problems, for example, if from n trials we observe zero
successes, we estimate p = 0 and hence place zero probability
on observing a head in the future!

P Instead, it is good practice to assume that the whole sample
space is plausible for future values, i.e. assume that our prior
contains observations from every outcome.

» Common to take 1 pseudo observation from every category, or 1
pseudo observation from the null, etc

> Also reasonable to take “a small number” (0.01 often used) to
provide non-zero mass to “unobserved events”

» In practice, this allows regularised frequentist inference by
taking the maximum aposteriori (MAP) estimate of a Bayesian
model

» Conjugacy is only required if we want an analytical solution.
MAP estimates are very useful elsewhere, provided stable
estimators exist.



Why regularise?

» The above interpretation makes it clear that Regularisation will
change our estimate:
» The first time a “new” type of observation is made, such as a
new category or cluster;
» When the number of pseudo observations is not small compared
to the amount of data.
» |t is therefore essential when:
» Making predictive distributions allowing for the possibility
that we have not yet learned everything,
» The total number of training observations is “small".
» Regularisation is essential when p > n where we have more
parameters than data and therefore no power to estimate them
all.



Regularisation models for regression

» In regression we minimise (y — X3)? (y — X3) with respect to
5.
P Regression is typically regularised with either:
> Ridge penalisation, by adding A\,.(8 — ¢)T (8 — c) to penalise
towards ¢ using second moments,
> Lasso penalisation, by adding A1||3 — c|| to penalise towards ¢
using first moments,
» ElasticNet penalisation, which combines the above.
» These have direct interpretations in terms of a Bayesian
model.
> Ridge regression is assuming prior observations at ¢ (with count
a function of \,.)

» Lasso regression assumes that the prior is a Laplace distribution
instead



Comments on regularisation

» Simple regularisation models can be represented as
pseudo-observations. This is conceptually and practically
convenient.

» Others cannot. They may enjoy other advantages, for example:

» Coming from a justifiable Bayesian prior. For example, a
hierarchical model assumes that there is a grand mean from
which local clusters are sampled. Clusters are penalised towards
the mean above them in the hierarchy.

» Providing desirable consequences. For example, Lasso
regression can set some coefficients to exactly zero, which is a
valuable complexity reduction.

» Regularisation is not Bayesian modelling, even though it
typically has an interpretation as a prior:

» |n Bayesian inference, we integrate over the prior to get a
posterior distribution.

» In MAP estimation and regularisation, we take the a point
estimate.

» Variational inference attempts to integrate over the prior, by
finding the closest fitting integrable distribution.



Reflection

» Are Bayesian approaches inherently slow?
» When might MAP estimation and full Bayesian inference
produce different predictions?
» How have we encountered regularisation previously?
» How does it relate to non-parametric models?
» How does it relate to Random Forests, decision trees and other
flexible predictors?
» When would we regularise vs cross-validate?
» Keep looking for regularisation as we move through the course,
especially in flexible machine learning systems such as neural
networks.
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