
Topic Models

Daniel Lawson — University of Bristol

Lecture 07.1.1 (v1.0.2)

Signposting

I This block is about modelling Languages, containing:
I Part 1: The ‘Bag of Words’ model,
I Part 2: An Aside on Bayes,
I Part 3: Latent Dirichlet Allocation.

ILOs

I Primarily:
I ILO2 Be able to use and apply basic machine learning tools

Bag-of-words model

I The bag-of-words model is the simplest tool for Natural
Language Processing. It takes a trivial form:
I A vocabulary is created, consisting of the set of all words in all

considered documents.
I Each document is represented as a feature vector by

counting the number of occurrences of each term (word).
I Typically, documents are sparse as most words do not appear in

most documents.

Notation

I Terms are indexed t = 1 . . . T
I Documents are indexed d = 1 . . . D
I A document Xd is a vector of term counts (sparsely stored)
I The Corpus C = {Xd}Dd=1 is the set of all considered

documents, and therefore contains all T terms

Python Bag-of-words

import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
count = CountVectorizer()
docs = np.array([
'The sun is shining',
'The weather is sweet',
'The sun is shining and the weather is sweet'
])
bag = count.fit_transform(docs)

I See Python Machine Learning1.

1p259 Python Machine Learning (Raschka & Mirjalili, 2nd ed 2017).

Python Bag-of-words

>>> print(count.vocabulary_)
{'sweet': 4, 'shining': 2, 'weather': 6,
'and': 0, 'the': 5, 'is': 1, 'sun': 3}
>>> print(bag.toarray())
[[0 1 1 1 0 1 0]
[0 1 0 0 1 1 1]
[1 2 1 1 1 2 1]]

Word importance

I A popular measure of word relevancy is term
frequency-inverse document frequency (tf-idf).

I tf-idf takes a very simple form:

tf − idf(t, d) = tf(t, d)× idf(t, d)

I Where the term frequency tf(t, d) = Xd(t)/
∑T

t=1 Xd(t) is the
frequency of term t in document d.

I The (log) inverse document frequency is:

idf = log
(

D

1 + nd(t)

)
= − log

(1 + nd(t)
D

)
I Where n is the total number of documents,
I nd(t) =

∑n
d=1 I(Xd(t) > 0) is the number of documents d

that contain the term t.
I The 1 is a smoothing term. . . (see Bayes in 7.1.2)

Interpreting tf-idf

I Clearly this is arbitrary, though based on a reasonable
principle. . .

I TF accounts for the frequency within the document
I IDF assumes terms are independent, and ignores frequency:

I The co-occurrence of two terms is the product of their
probabilities, or the sum of their log probabilities

I This ignores term frequency within each document
I This is therefore approximating

Pr((t|d) ∧ (t ∈ d)) log(Pr(t ∈ d))
I This can be rearranged into Pr(d|t) ∝ Pr(d, t),
I And resembles the elements of a Mutual Information

measure:

(T, D) =
∑

t

∑
d

p(t, d) log
(

p(t, d)
p(t)p(d)

)
.

Interpreting tf-idf
I The resemblance is meaningful, but not rigorous2

I Some hand-waving is required to get there:
I tf = Pr(t|d) = Xd(t)/

∑T
t=1 Xd(t) ≈ 1+nd(t)

D i.e. knowing the
term tells you it is from one of the documents containing that
term,

I idf = − log(Pr(d|t))
I Pr(d) = 1/D

I The mutual information form can be reached by rearranging
these sorts of statements

I It is not precise because different approximations are used in
different elements

I And Mutual Information is a property of distributions, not of
elements of that distribution.

I Very many other interpretations exist!
I These hacks can justified on robustness grounds.

2Stephen Robinson, Microsoft Research Understanding Inverse Document
Frequency: On theoretical arguments for IDF

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.7340&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.7340&rep=rep1&type=pdf

Python tf-idf

from sklearn.feature_extraction.text import TfidfTransformer
tfidf = TfidfTransformer(use_idf=True,

norm='l2',
smooth_idf=True)

np.set_printoptions(precision=2)
print(tfidf.fit_transform(count.fit_transform(docs)).toarray())
[[0. 0.43 0.56 0.56 0. 0.43 0.]
[0. 0.43 0. 0. 0.56 0.43 0.56]
[0.4 0.48 0.31 0.31 0.31 0.48 0.31]]

Alternative transforms

I tf-idf is arbitrary. It induces a useful feature space for
comparisons. It ignores word usefulness.

I Alternatives include:
I Cosine Similarity
I Any other transformation, especially those with

information-theory interpretations
I feature extraction methods to understand classification

importance
I Word2Vec: Implemented in the package gensim.
I Doc2Vec: Another option.
I Modelling, e.g. Latent Dirichlet Allocation.

N-grams

I The previous analysis treats words as a “unit of inference”.
I It is instead possible to consider N-grams, that is, all

occurrences of (up-to) N characters.
I Given enough data, it is possible to learn the words.
I This is valuable for modelling, e.g.:

I Foreign languages: all unicode characters can be handled,
I Non-languages such as computer code or byte strings, such as

seen in binary executables,
I Arbitrary factor sequences.

I They are typically stored efficiently (see hashing later in the
course).

I The penalty is that:
I larger corpora are required to obtain the same classification

performance,
I the feature space is dramatically larger,
I word standardization cannot be used (see 7.2)

Reflection

I In tf-idf, how different is Pr(t|d) when using presence/absence,
to using term frequency?

I What is a topic model mathematically? Can you distinguish
between instances of a topic model, and what the general set
of topic models looks like?

I What is a feature in topic modelling?
I What is good and/or bad about the Bag-of-words model?
I How would you quantify the loss of performance in an N-gram

vs a language-aware model?
I How could you empirically compare topic models?

Signposting

I Bayes and LDA still to come in 7.1
I Practical considerations to come in 7.2
I In the workshop we’ll cover LDA in anger, with a focussed

workshop session.
I Some references:

I Bag-of-words: p259 Python Machine Learning (Raschka &
Mirjalili, 2nd ed 2017)

I Topic Modeling and Latent Dirichlet Allocation: An Overview
(Weifeng Li, Sagar Samtani and Hsinchun Chen)

I Stephen Robinson, Microsoft Research Understanding Inverse
Document Frequency: On theoretical arguments for IDF

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.7340&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.7340&rep=rep1&type=pdf

