Decisions, Trees, Forests (Part 2, Forests)

Daniel Lawson University of Bristol

Lecture 06.1.2 (v1.0.1)

Signposting

► Lecture 6.1 is split into two parts:

▶ 6.1.1 Trees

6.1.2 Forests

This is 6.1.2

► The Workshop 6.2 is intimately linked.

Random Forest

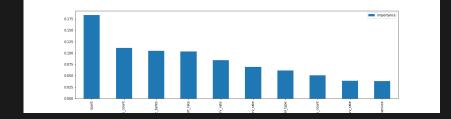
- A random forest is a set of decision trees that are combined together to perform classification.
- ► For each of *T* trees, the following steps are run:
 - Choose which variables to include:
 - Choose m_f random features. A typical choice is $m_f = \sqrt{m}$ where *m* is the number of features.
 - Analogous to bagging for features (downsampling without replacement in this case)
 - Learn a tree classifier independently via some standard Tree learning algorithm:
 - For each feature, for each leaf, find the split that maximises a score function, e.g.:
 - CART (Classification and Regression Trees) uses Gini Index as metric.
 - ID3 (Iterative Dichotomiser 3) uses Entropy function and Information gain as metrics.
 - Choose the feature that maximises the score

Random Forest outputs

The Random Forest combines decision trees into a classification by:

- Weighting each tree according to its performance
- Report the weighted vote
- It is also possible to extract feature importance:
 - The importance of features is measured by how much each decreases the score, averaged over all trees
 - Features that are never used will get a score of 0
 - Features that are important in every tree in which they appear will get a high score
 - Features that are correlated will often split their importance

Random Forest vs boosted decision tree

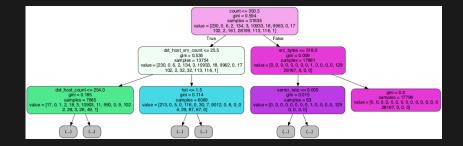

- Gradient Boosting Machine (GBM) is the go-to boosted decision tree
- GBM and RF differ in the way the trees are built, the order, and the way the results are combined
- RF can be trivially paralellized
- GBMs seem to outperform RFs under competition conditions, but do worse when their parameters are untuned¹

 $^{{}^{1}} http://fastml.com/what-is-better-gradient-boosted-trees-or-random-forest/$

```
from sklearn.ensemble import RandomForestClassifier
clf= RandomForestClassifier(n_jobs=-1,
    random_state=3, n_estimators=102)
trained_model= clf.fit(X_train, y_train)
clf_score=trained_model.score(X_train, y_train)
y_pred = clf.predict(X_test)
```

```
feature_importances = pd.DataFrame(clf.feature_importances_,
    index = X_train.columns,
    columns=['importance']).sort_values('importance',
    ascending=False)
```

Random Forest Feature Importance


```
estimator5 = clf.estimators_[5]
```

graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.create_png())

Random Forest Feature Trees

Random Forest Feature Trees

Final thoughts

- Random Forests are typically better than bagged decision trees
- There are theoretical examples where either dominates
- Boosting changes things but isn't a magic bullet
- Usually worth being open minded; the differences could be seen as tuning parameters of a more general algorithm

Reflection

- Why are Random Forests considered to be important?
- What variations on Random Forests can you think of? Under what circumstances would you expect them to work?
- What does a Random Forest decision boundary look like? How dependent are they on the specific choice of features?
- By the end of the course, you should:
 - Know what a decision tree is, and be able to implement the basic algorithm
 - Know what a Random Forest is, and understand its advantages and disadvantages
 - Be able to use pre-existing implementations
 - Be able to interpret their output appropriately

Signposting

- In the practical we'll implement these models in R and Python; compare implementations, and to previous results.
- Next semester we'll start with the "other" LDA (Latent Dirichlet Allocation), Topic Modelling, and Modelling Documents.
- References:
 - Chapter 15 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
 - Implement a Random Forest From Scratch in Python
 - A Gentle Introduction to Random Forests at CitizenNet
 - DataDive on Selecting good features
 - Cosma Shalizi on Regression Trees
 - Gilles Louppe PhD Thesis: Understanding Random Forests