
Introduction to Classification - The basics (kNN,
LDA, SVM)

Daniel Lawson University of Bristol

Lecture 05.1.2 (v1.0.2)

Signposting

I You should have come here from 05.1.1 - Introduction to
Classification

I This is part 2 of Lecture 5.1, which is split into:
I 5.1.1 covers a Classification Introduction and Interpretation
I 5.1.2 covers kNN, LDA, SVM

I In 5.2 we cover boosting and ensemble methods
I In 6 we cover Tree and Forest methods

Classification

K-Nearest Neighbour classification

I In Block 4, we introduced K-NN for density estimation.
I We defined some choices of distance function
I We obtained the K nearest neighbours of points in R

I Armed with those neighbours, a classifier can be implemented
by using majority vote of the labels of all k neighbours.

I A naive implementation scales poorly with N , but an
approximate lookup can control complexity.

I See also: Condensed nearest neighbor1 approaches to reduce
the amount of data required at the classification stage.

1Hart P, The Condensed Nearest Neighbor Rule. IEEE Transactions on
Information Theory 18 (1968) 515-516. doi: 10.1109/TIT.1968.1054155

K-Nearest Neighbour example

Linear Discriminant Analysis

I Developed in 1936 by R. A. Fisher2 and extended to the
current multi-class form in 19483.

I The goal is to project a high dimensional space into K
dimensions, maintaining (linear) classification ability.

I Prediction benefit comes only from reducing overfitting
I Strong relationship with PCA, often used in tandem (PCA

then LDA)
I Assumes that each class k has a different mean µk and a

shared covariance matrix Σ
I Kernel Discriminant Analysis exists4

2Fisher R, “The Use of Multiple Measurements in Taxonomic Problems”
(1936) Annals of eugenics (!), now “Annals of Human Genetics”

3Rao C, “Multiple Discriminant Analysis” (1948) JRSSB
4Mika, S et al “Fisher discriminant analysis with kernels” (1999) NIPS IX:

41-48

LDA algorithm
1. Compute the mean location µk for each class k and the overall

mean µ, as well as the assignment sets Dk.
2. Compute the within-class scatter matrix SW :
SW =

∑K
k=1 Sk where

Sk =
∑

i∈Dk

(~x− ~µk) (~x− ~µk)T

3. Compute the between-class scatter matrix SB:

SB =
K∑

k=1
ni (~µk − ~µ) (~µk − ~µ)T

4. Solve for the eigenvalues λk and eigenvectors vk of S−1
W SB

5. Choose a dimension threshold K∗, either using the same
methods as for PCA, or cross-validation

6. Predict using µk . . .

LDA prediction

I Class prediction can use any information in the LDA data
summary. Options include:
I Nearest cluster
I Likelihood: Pr(~x|yk = c) = Normal (µk,Σ)
I Posterior: Pr(yk = c|~x) ∝ Pr(~x|yk = c)p(yk = c);

i.e. reweight classes according to their frequency

LDA example

Towards Support Vector Machines

I LDA uses all the points for classification, which makes it slow
I It is also linear
I (It could be made non-linear by mapping the data to high

dimensions, but this is often infeasible)
I Moving towards SVM, we:

I Can exploit the kernel-trick to make a non-linear decision
boundary without explicit mapping

I Switch focus from group means to making the largest group
separation

I If we only want to discriminate classes, we can only use a
subset of the data, the support vectors, for the decision

I This makes the method:
I robust to distributional assumptions
I non-generative

Support Vector Machine overview

I Find the maximum margin hyperplane separating the classes
closest points

I Allow soft margins: misclassified points are down-weighted
I Nonlinearity: express distances as inner products, allowing

non-linearities via the Kernel trick
I Algorithm: finding the hyperplane is a “quadratic optimisation

problem”.

SVM illustration: solution space

Planar geometry
I The data are ~x ∈ D containing N examples
I The labels are yi ∈ (−1, 1)
I A hyperplane is defined via:

I ~w, the coordinates of the plane
I ~w0, a point on the plane chosen such that ~w0 is perpendicular

to ~w:
~w · (~x− ~w0) = ~w · ~x+ b = 0

SVM margins

I The distance of a point to the line is the residual after the
point is projected onto the line:

d~w(~x) = ~n · (~x− ~x′) = |~w · ~x+ b|
|~w|

I For a given hyperplane, the minimum margin is

M~w = argminx∈Dd~w(~x)

I The maximum margin hyperplane is therefore:

argmax ~wargminx∈Dd~w(~x)

SVM illustration: SVM solution

Computing the margins

I This is a classic Quadratic Programming problem5

I Broadly:
I quadratic penalty: distance to the plane ∝ squared norm of the

hyperplane vector 1
2 |~w|

2

I linear inequalities: none of the data are closer than M~w. So
∀i : yi(~w · ~x+ b) ≥ 1

I and pass these to a standard QP solver
I A computational trick: only evaluate the points on the margins

5For this course, you need to know what QP can do for you. You don’t need
to know how it works.

SVM problem

Imperfect classification with SVM

I To account for data the wrong side of the margins, the
penalty is changed to:

1
2 |~w|

2 + C
N∑

i=1
εi

I where εi is the “distance” needed to move the point to the
correct decision boundary, i.e.

~w · ~xi + b ≥ 1− εi if : yi = 1 (1)
~w · ~xi + b ≤ −1 + εi if : yi = −1 (2)

I and εi = 0 if already inside it, so also requiring the constraint
εi ≥ 0

SVM example

kernel SVM example

Wrapup

I Logistic regression is the go-to straw man classifier in
machine learning:
I It is easy to implement
I It is a natural predictive model
I It does reasonably well in many settings

I k-NN is the interpolation method to beat
I Linear Discriminant Analysis is also widely used:

I It is easy to bolt onto PCA
I Clusters are more interpretable than logistic regression

I SVMs remain an important competitor at the bleeding edge:
I A hyperplane is a natural discriminatory model
I Feature engineering can allow complex non-linear models
I Low-complexity classifier once training is performed

I Neighbourhoods are always competitive, but are costly at
test time

Reflection

I Why is LDA used with PCA, and not instead-of?
I How would you imagine an approximate lookup for k-NN would

work?
I How sparse should the SVM solution be? In what sense is SVM

efficient? When would it be cutting edge?
I By the end of the course, you should:

I Be able to navigate the many approaches to classification
I Understand and be able to explain the high level function of:
I Logistic Regression, Nearest Neighbour classification, LDA,

SVMs

Signposting:
I In this Block’s workshop we’ll experiment with these and other

classifiers on cyber data, as well as introducing boosting.
I In the following Block we’ll introduce Random Forests, as well

as boosted decision and regression trees. Naive Bayes comes in
Block 7 with other Bayesian Methods.

I References:
I k-Nearest Neighbours:

I Chapter 13.3 of The Elements of Statistical Learning: Data
Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

I Linear Discriminant Analysis:
I Sebastian Raschka’s PCA vs LDA article with Python Examples
I Chapter 4.3 of The Elements of Statistical Learning: Data

Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

I SVMs:
I Jason Weston’s SVMs tutorial
I e1071 Package for SVMs in R
I Chapter 12 of The Elements of Statistical Learning: Data

Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://sebastianraschka.com/Articles/2014_python_lda.html#principal-component-analysis-vs-linear-discriminant-analysis
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://www.cs.columbia.edu/~kathy/cs4701/documents/jason_svm_tutorial.pdf
ftp://ftp.cse.yzu.edu.tw/CRAN/web/packages/e1071/vignettes/svmdoc.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf

