Outliers and Missing data (Part 1, Outliers)

Daniel Lawson University of Bristol

Lecture 04.2.1 (v1.0.1)

Signposting

- How do we identify Bad Data? That is, data that is misleading either due to missingness out atypicality.
 - This is one of the key ways that Data Science Goes Wrong.
 - Most researchers and practitioners do less than they should to understand their data.
- We use several approaches from previous lectures; this is as early in the course as it fits.
- ► This is part 1 of Lecture 4.2:
 - Part 1 is about outliers,
 - Part 2 is about missing data.

Intended Learning Outcomes

- ILO1 Be able to access and process cyber security data into a format suitable for mathematical reasoning
- ILO2 Be able to use and apply basic machine learning tools
- ILO3 Be able to make and report appropriate inferences from the results of applying basic tools to data

Bad Data: Missing and Misleading data

- The most time-consuming part of any real-world data analysis is data cleaning.
- This takes two main forms:
 - Imputing missing data where possible
 - Removing bad data where necessary
- It is vital that this is handled properly in order to gain appropriate insight from data.

Quality Control: Diagnosing bad data

- Most of QC is about figuring out whether your data are really what you thought they were.
 - Did you measure what you set out to measure?
 - Are there systematic effects that were unexpected?
- In many disciplines there are well-defined ways to spot issues.
- Cyber data tends to be more bespoke and therefore the problems are more unique.

Problems associated with Cyber data

- Cyber data is pretty poor!
- Typical problems include:
 - Mass dropout: whole sections of data missing, due to failure or system overload
 - Feature dropout: Some characteristic of the data is not captured properly for all or a subset of the data. For example, UDP packet sizes reported as 0
 - Change in character: if the data change due e.g. to an update, the data recording mechanism may not track this resulting in any of the problems above
 - Unexpected data: Much data is reported as an accumulation of something. If e.g. the termination condition is missed, a hash key duplicated, or the data unexpectedly large, reporting of the data can be wild.

Statistical tools for bad data

There are two main tools available:

1. Exploratory Data Analysis

Does it look generally look the way it should?

- Methods involve both plots and data summaries
- We looked at this in Block 1

2. Outlier Detection

- What specific parts of the data look unusual?
- Methods focus on anomoly detection

Key questions to ask

1. Do my data contain important missingness?

- What aspects of the truth am I not seeing?
- How would I know?
- What impact could missingness have on my analysis?
- 2. Do my data containing important outliers?
 - What do we mean by an outlier?
 - What impact will they have on my subsequent analysis?
 - What should I do about them?

Example: Not Missing At Random

```
Q1 of the workshop.
library("knitr")
conndataM-conndata
for(i in c(9,10,11,16:19))
    conndataM[,i]=as.numeric(conndataM[,i])
for(i in c(7,8)) conndataM[,i]=as.factor(conndataM[,i])
mtab=table(data.frame(
    missingduration=is.na(conndataM[,"duration"]),
    proto=conndataM[,"proto"]))
```

Anomaly Detection

- Anomaly detection uses the core methods we have seen throughout.
- For example, Density estimation (Block 4), cluster analysis (Block 3), regression (Block 2), etc.
- These models:
 - provide a baseline measure of what is Normal?
 - Against which Unusual is measured.

Measuring "Unusual" with p-values

- It is straightforward to use any model that can output a p-value as a measure of anomaly.
- Since a p-value is a Uniform random variable under the null, there is a wide literature available to assess whether the dataset as a whole is anomalous.
- The problem: In any cyber dataset, there is no plausible null hypothesis.
 - ► The data will "look weird" by any statistical measure.

Measuring "Unusual" with descriptive statistics

Thresholding:

- ▶ We saw in the "boxplot" that outliers were defined as all observations at least 3/2 IQR above Q₃ or below Q₁.
- This comes from reasoning about Normal distributions. However, the idea of thresholding based on intuition is probably the most common way to proceed.
- Thresholding can be applied to p-values when they are not interpreted literally.
- Removed values should be investigated to understand why they are unusual.
- Thresholds might be obtained by:
 - reference to other datasets,
 - theory,
 - bootstrapping,
 - ▶ ... etc!

Example: diagnosing outliers

Activity 2 of the workshop. thist=hist(conndataM[,"duration"],breaks=101) plot(thist\$mids,thist\$density,log="y",type="b", xlab="duration",ylab="histogram density")

Measuring "Unusual" with models

- Many modelling paradigms explicitly handle outliers. Some examples:
- Regression:
 - Measure leverage of each point (not always the same as outliers)
 - Robust regression methods fit better in the presence of outliers
- Density-based clustering (DBSCAN)
 - Points in low density regions may be outliers
 - An empirical p-value can be constructed from the set of points in lower-density regions.

Isolation Forests

- Random Forest-based technique (covered later).
- Based on identifying "points that are easy to distinguish with a decision tree".
- Many other methods offer Pr(data|model).

Duplicates and sample density

Sample density obviously affects inference.

- It is desirable that the sampling density reflects the density of the data to be predicted.
- Missing data often makes many records, that should otherwise be different, appear the same.
 - This dramatically affects density estimation.
- One solution is to work only with unique records.
 - This solves some types of bias but not others, e.g. overrepresentation of particular regions of continuous variables.
 - No longer a density, but a **plausible region**.

Batch and similar effects

- Correlation analyses of features with properties of the data that should not matter are a vital tool in Quality Control.
- Some quantities are known apriori not to affect some feature.
 - For example, if data are observed in batches, the batch number shouldn't matter.
 - In regression analyses, minor batch effects can be regressed out (included in the model).
 - Major batch effects require the data to be discarded or treated specially.
- As always, Correlation \neq Causation.
 - So observing that e.g. different sources of data have different structures of traffic going over them isn't a smoking gun for a QC problem.
 - e.g. in Cyber data, they might measure different sorts of traffic.

Example of batch effects

- Is there a batch effect by day?
- Activity 3 of the workshop:

Robust algorithms

- Most algorithms have robust alternatives, e.g.
 - Robust regression, (quantile regression),
 - Robust clustering,
 - Robust Kernel Density Estimation,
 - ... etc. Find one for your problem.
- Generally, robustness comes at a cost:
 - Increased computational complexity due to e.g. lack of integrability: e.g. Normal kernel replaced by Laplace,
 - Harder optimisation problem, e.g. more local minima, non-convex solution,
 - Or just not the model you wanted?
- Robustness is not a general property but defined with respect to some class of models.
 - There are many different "Robust algorithms for X" with different properties.
- "Too many" outliers will change the model anyway. How many is too many?

Removing outliers

"An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism." Charu Aggarwal, IBM Research
When outliers are detected, what should you do with them?
Should we switch to a robust algorithm and take the hit?
Or remove outliers for the purpose of model building?
Or add an "outlier model", e.g. a larger normal distribution in Gaussian Mixture Modelling?

Reflection

- How do we know that the class of outliers detected is the "right" ones?
- Do we expect more outliers in a test dataset?
- How might we test that an algorithm is the "right kind" of robust?
- By the end of the course, you should:
 - Be able to check data for outliers,
 - Be able to perform basic outlier detection,
 - Be able to reason about what outlier removal will do.

Signposting

Further Reading:

- "A Survey of Outlier Detection Methodologies" by Victoria Hodge & Jim Austin, Artificial Intelligence Review 22:85–126 (2004).
- Outlier Analysis by Charu C. Aggarwal. NB: Not freely available.
- Chapter 10 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani) discusses the robustness to outliers for various methods.