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Signposting

» This is part 3 of Lecture 4.1, which is split into:
» 4.1.1 covers Transforms

» 4.1.2 covers Density estimation
» 4.1.3 covers the Kernel Trick.



The Kernel trick - a Motivation

» What if there is a nonlinearity in the data?
> : map the data into a higher dimensional space in
which the relationship is (approximately) linear

Input Space Feature Space




The Kernel Trick

» Problem: High dimensional spaces are hard to work with and
computationally costly

» Solution: Make the space implicit: all computation is done
using a Kernel that uses a map ¢ : X — R" for data in the
original space z,y € X:

K(z,y) = (¢(x), 9(y))

» Kernels are any function that can be expressed as an inner
product..



Kernel example

» Input space X C R? with the map:
¢: X = (21, 22) = (23,23, V2x129) € R3
» i.e. the second moments. Then:

<¢($)7¢(y)> = <(:I;%7x§7ﬁx1$2)7(y%?y§a\/§yly2)>
(21yf + 23Y3 + 271Y172Y2)
= (T1y1 + 2232)? = (X, ¥),

» i.e. the (squared) dot product.



Kernel examples!

1. Effect of the map ¢(x,,X2) = (X}, v/2X1x2,X3) (a) Input space X and (b)
feature space H.

'Dave Krebs’ class


https://people.cs.pitt.edu/~milos/courses/cs3750-Fall2007/lectures/class-kernels.pdf

Kernel properties

P Kernel spaces are closed under many operations.
» Being closed under f means that if x is in the space, f(x) is
also in the space.
» The operations are:
1. Addition: K(z,y) = Ki(z,y) + Ka(z,y)
Multiplication of a scalar: K(z,y) = aK;(z,y)
Kernel Product: K (z,y) = Ki(z,y)Ka(x,y)
Functional Product: K(z,y) = f(x)f(y)
Kernel of a Kernel: K(z,y) = K3(¢(x), d(y))
6. Matrix operation: K (z,y) = 27 By

SARE SR )

» It is therefore possible to make modular kernels.



Gram Matrix

| 2

The Gram matrix is used by many methods exploiting the
Kernel Trick:

K= (k(xla xj))ij > VZ,]
This is a pre-computation: we compute the kernel between all
pairs once, at the beginning, from which all subsequent
computations follow.
As long as the Gram matrices are positive semi-definite for all
training sets. You can do the theory, or just check. ..
The resulting space is called a Reproducing Kernel Hilbert
Space (RKHS).
It provides several important properties> and underpins many
applications. ..

2Hofmann, Schoelkopf, & Smola (2008) “Kernel Methods in Machine
Learning” (Ann. Stat.)



https://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/materials/0701907.pdf
https://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/materials/0701907.pdf

Important applications (later)

» Support Vector Machines

> Kernel Regression

» Kernel models on graphs (random walk, etc)
» Causal inference (Markov graphs)

> Kernel PCA



Kernel PCA

» For illustration we'll consider kernel PCA. Map z; € R to an
arbitrary feature space ¢(z;) € R™ using the Gram Matrix:

K(z,y) = ¢()" (y)
» For which we'll consider the eigenvector equation for v € R™:

Cv=M
> with the usual properties for the mean = 1 " | ¢(2;) =0

and covariance C = 1 37 | ¢(z;)¢(z;)7.



Kernel PCA continued

» Eigenvectors are linear combinations of the features:
v =30 ().

» It turns out that kernel PCA requires only solving the regular
eigenvector problem for the eigenvalues a; of a Kernel
matrix K:

KO(Z‘ = )\,L'Oéi
Because the feature space may not be mean centred, K # K
in general but is simply related:

K=K-21y,K+1,,K1,,

> where 1/, is a vector of length n with elements 1/n.



Kernel PCA example

> See 3.
¢ )

kpcvanilla ( . ,data=testdata_sample,

kernel= ,kpar= () ,features=4)
kpc (~.,data=testdata_sample,

kernel= ,kpar= (sigma=0.02) ,features=4)
kpclaplace (~.,data=testdata_sample,

kernel= ,kpar= () ,features=10)
kpcpoly (~.,data=testdata_sample,

kernel= ,kpar= () ,features=10)

(kpcCeig) # Plot eigenvalues

*Hofmann, Schoelkopf, & Smola (2008) “Kernel Methods in Machine

Learning” (Ann. Stat.)


https://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/materials/0701907.pdf
https://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/materials/0701907.pdf

Kernel PCA example

Vanilla Laplace
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Example Kernels:

> Linear Kernel: k(x,y) =x'y +c¢
» The regular dot product.
» Gaussian Kernel: k(x,y) = exp (7"2(;23"2) +c
» Very susceptible to outliers due to the “narrow tails”
» Exponential Kernel: k(x,y) = exp (_‘2’;—2}") +c
> Also called the radial kernel
» Related to the Laplacian kernel
» Power Kernel: k(x,y) = —|x —y?
» conditionally positive definite, so needs extra care
Log Kernel: k(x,y) = —log(|x — y|+1)

» conditionally positive definite, so needs extra care

\4

» Histogram Intersection Kernel
> ... an n!


http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/

Thoughts on kernels

» The choice of Kernel is a parameter

» Which may itself contain additional parameters,
e.g. bandwidths

» How to estimate? Evaluating performance requires calculating
the whole N2 matrix so it will be slow to iterate!

» Machine Learning thrives on usage cases where these decisions
are either relatively unimportant or determined by the
method.

P> As we've seen, adaptive kernels such as nearest neighbour
density estimation may be more robust than parametric
kernels. Similar guidance holds here.



Reflection

> What is the benefit of the Kernel Trick? What is the cost?
» How would you apply it in practice?
» By the end of the course, you should:
» Be able to perform basic computations with the ‘Kernel Trick’
» Be able to reason at a high level about the advantages and
disadvantages of deploying the kernel trick for a particular cyber
security example



Signposting

» In 4.2 we give some thought to the concept of outliers and
missing data.
> References:

>
>
>

For the Kernel Trick Dave Krebs' Intro to Kernels
For the Kernel PCA: Rita Osadchi's Kernel PCA notes
Hofmann, Schoelkopf, & Smola (2008) “Kernel Methods in

Machine Learning” (Ann. Stat.)

Schoelkopf B., A. Smola, K.-R. Mueller (1998) “Nonlinear

component analysis as a kernel eigenvalue problem”.



https://people.cs.pitt.edu/~milos/courses/cs3750-Fall2007/lectures/class-kernels.pdf
http://www.cs.haifa.ac.il/~rita/uml_course/lectures/KPCA.pdf
https://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/materials/0701907.pdf
https://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/materials/0701907.pdf
https://www.mlpack.org/papers/kpca.pdf
https://www.mlpack.org/papers/kpca.pdf

