Nonparametrics and kernels (Part 2, Density estimation)

Daniel Lawson University of Bristol

Lecture 04.1.2 (v1.0.2)

Signposting

\blacktriangleright This is part 2 of Lecture 4.1, which is split into:

- \blacktriangleright 4.1.1 covers Transforms
- \blacktriangleright 4.1.2 covers Density estimation
- \blacktriangleright 4.1.3 covers the Kernel Trick.

Kernel density estimation (KDE)

- \blacktriangleright Let $\{\vec{x}_i\}_{i=1}^N$ be a dataset on some space (for simplicity taken as \mathbb{R}^d).
- \blacktriangleright Then the Kernel *K* provides the density estimate for any point \vec{y} as:

$$
f_{\mathbf{H}}(\vec{y}) = \frac{1}{N} \sum_{i=1}^{N} K_{\mathbf{H}} (\vec{y} - \vec{x}_i),
$$

where **H** is a matrix of bandwidths.

- **IF** In other words, its a sum of independent contributions from each datapoint.
- \blacktriangleright It can be written:

$$
K_{\mathbf{H}}(\vec{y} - \vec{x}_i) = \frac{1}{\det(\mathbf{H})} K\left(\mathbf{H}^{-1}(\vec{y} - \vec{x}_i)\right)
$$

KDE in 1d

 \blacktriangleright In 1D:

$$
f_h(\vec{y}) = \frac{1}{N} \sum_{i=1}^{N} K\left(\frac{\vec{y} - \vec{x}_i}{h}\right)
$$

- \blacktriangleright Its common to use a Normal kernel $K(x) = \text{Normal}(x; \mu = 0, \sigma = 1).$
- \blacktriangleright *h* can be chosen by minimising the "Mean Integrated Square Error". . .

 \blacktriangleright which theoretically suggests a functional form $h \propto N^{-1/5}$.

- \triangleright Most density tools in packages use a reasonable default (which also depends on dimension).
	- \blacktriangleright This is appropriate for statistical inference of the density estimate at an unspecified point *x*.
- In practice the "right" bandwidth is a function of the **question**, so defaults might work poorly.
	- ▶ For **EDA**, we often want a smaller bandwidth to reveal potential data features

kDE Example

KDE with unique points

KDE kernels

\blacktriangleright Some *important multivariate kernels*:

- \blacktriangleright Spheroid Gaussian (**H** and Σ are diagonal)
- ▶ Rectangular (**H** is diagonal, Uniform kernel)
- **P** Product Gaussian (**H** off-diagonals are products, Σ is diagonal)
- ▶ H is a parameter. It can be estimated by Cross-Validation but it is high dimensional so this is hard.

Applications of KDE

 \blacktriangleright Kernel density estimates are considered important in many applications, including:

- \blacktriangleright Smoothing
- \blacktriangleright Clustering
- \blacktriangleright Topological Data Analysis
- \blacktriangleright Level set estimation
- \blacktriangleright Feature Extraction
- \blacktriangleright ... etc!

K-Nearest neighbours

- ▶ Measuring neighbourhoods is a very important component of many applications.
- \blacktriangleright A fast way to do this is by computing for each point, their k-Nearest neighbours (k-NN).
- ▶ Note the requirement for a distance measure (metric or otherwise).
- I Algorithms to do this are called **nearest neighbour search**:
	- \blacktriangleright Linear algorithms: Check all distances for all points. $O(N^2)$ to compute the structure.
	- ▶ Space partitioning: KD-trees etc partition the space. $O(N \log(N))$ but are less good in high dimensions...
	- **Approximate methods:** there are many great methods for this problem, which are often nearly perfect and much faster. Locality Sensitive Hashing is popular.

k-NN density estimation

▶ A Density estimate using k-NN:

$$
\hat{p}_{kNN}(x) = \frac{k}{N} \cdot \frac{1}{V_d R_k^d(x)}
$$

\blacktriangleright where:

- \blacktriangleright *d* is the dimension of the space,
- \blacktriangleright *k* is the number of neighbours,
- \blacktriangleright *N* is the sample size,
- \blacktriangleright $R_k^d(x)$ is the "radius", i.e. the distance to the *k*-th closest neighbour of *x*, and
- \blacktriangleright V_d is the volume of a unit ball:

$$
V_d = \frac{\pi^{d/2}}{\Gamma(d/2 + 1)}
$$

 \triangleright so *V*₁ = 2, *V*₂ = π, *V*₃ = $\frac{4}{3}$ $rac{4}{3}\pi$. \blacktriangleright NB k is a parameter!

k-NN density estimation

```
library("TDA")
Xseq \leftarrow seq(-0.035, 0.0046, length.out=50)Yseq \leq seq(-0.009, 0.02, length.out=50)
Grid \leq expand.grid(Xseq, Yseq)
```

```
klist=c(1,2,5,10,20,50)knnlist=lapply(klist,function(k){
    KNN \leq knnDE (testdata all.svd$u[,1:2], Grid, k)
    KNNm=matrix(KNN,nrow=length(Xseq),ncol=length(Yseq))
})
```
k-NN density estimation

Reflection

- \blacktriangleright When is regular KDE appropriate? How does it compare to nearest-neighbour approaches?
- \blacktriangleright When might neither be appropriate?
- \blacktriangleright What does the density estimate at a point mean?
- \blacktriangleright How could it be used in classification?
- \blacktriangleright What are its other uses?
- \blacktriangleright By the end of the course, you should:
	- \blacktriangleright Be able to implement kernel density estimation
	- \blacktriangleright Be able to reason about it's use for classification

Signposting

- \blacktriangleright Next up: The Kernel Trick
- ▶ Further reading for Kernel Density Estimation:
	- ▶ Kernel Smoothing: Chapter 6 of [The Elements of Statistical](https://web.stanford.edu/~hastie/Papers/ESLII.pdf) [Learning: Data Mining, Inference, and Prediction](https://web.stanford.edu/~hastie/Papers/ESLII.pdf) (Friedman, Hastie and Tibshirani).
	- ▶ For kNN [Yen-Chi Chen's notes on kNN and the Basis](http://faculty.washington.edu/yenchic/18W_425/Lec7_knn_basis.pdf)