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Signposting

I We have looked at clustering methods, based on algorithms,
distances or models.

I Clustering links to non-parametric statistics, which provides
features that can be clustered.

I The dimensionality reduction session was one example of
non-parametric statistics.

I This is part 1 of Lecture 4.1, which is split into:
I 4.1.1 covers Transforms
I 4.1.2 covers Density estimation
I 4.1.3 covers the Kernel Trick.



Intended Learning Outcomes

I ILO1 Be able to access and process cyber security data
into a format suitable for mathematical reasoning

I ILO2 Be able to use and apply basic machine learning tools
I ILO3 Be able to make and report appropriate inferences from

the results of applying basic tools to data



Non-parametric statistics

I Non-parametric statistics come in several flavours:
1. Parameter-free hypothesis tests
2. Zero-parameter representations which can be thought of as a

data transformation.
I examples include: Time-Frequency transforms, Kernel methods
3. Infinite-parameter representations which can be thought of as

generalisations of parametric models.
I examples include: Hierarchical Dirichlet Process, the Stochastic

Block Model for graphs
I We covered 1 in testing. We touch on 3 later. This lecture is

about 2.
I Most methods are parametric nonparametrics: it is rare that

a data transformation method isn’t naturally thought of with a
parameter!



Transforming data

I In previous practical problems we’ve used simple transforms to
make the data easier to model:
I log-transform
I square-root/power transform

I Some data simplify greatly when transformed appropriately:
I periodic data are simpler after taking a frequency transform

I Bring in expertise on such transforms if you have it.
I Transformed data can be seen as feature augmentation, or

latent embedding, depending on use.



The Basis Expansion

I Most transforms we consider are designed to exactly reproduce
the data.

I These are basis expansions and are typically invertible.
I They make good feature sets if they result in a dimensionality

reduction;
I that is, they lead to a useful approximation using only a few

features.
I PCA is one example of this.
I There are many others. . .



Fourier transform

I The Fourier transform is written:

f̂(η) =
∫ ∞
−∞

f(x)e−2πixηdx

I The Discrete Fourier Transform (DFT) is used in practice as
datasets typically have a minimum sampling rate δ.

I It is usually computed using the Fast Fourier Transform
(FFT).

I Consider using it for periodic data, or to look for periodicity.
I The power in any frequency i is proportional to |f̂(ηi)|2.

I High power means this frequency is present in your data.
I There are formal tests for “significance” of high power.



Fourier transform example

conndata_ts=data.frame(t=seq(min(conndata$ts),
max(conndata$ts),by=1),x=0)

for(i in 1:dim(conndata)[1]){
conndata_ts[ceiling(conndata[i,"ts"]-

conndata_ts[1,"t"]),"x"] =
conndata_ts[ceiling(conndata[i,"ts"]-

conndata_ts[1,"t"]),"x"] + 1
}
# Not fast unless length(x)=2ˆk
myx=1:(2ˆ16) # Largest valid choice
conndata_fft=fft(conndata_ts[myx,"x"])



Fourier transform example



Walsh-Hadamard transform

I The Walsh-Hadamard transform is a version of the Fourier
Transform that is useful for Binary data.

I It is defined recursively via the Hadamard Matrix:

H0 = 1,

Hm = 1√
2

(
Hm−1 Hm−1
Hm−1 −Hm−1

)
I For N total bits, the whole matrix is of size 2m× 2m = N ×N .
I The transform is w = Hx.
I w can be computed efficiently with the fast Walsh-Hadamard

transform in complexity O(N log(N)).
I It was developed in encryption & signals processing but is

useful to generate features in many contexts.



Walsh-Hadamard matrices

H1 = 1√
2

(
1 1
1 −1

)

H2 = 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1





Walsh-Hadamard matrices

H1 = 1√
2

(
1 1
1 −1

)

H2 = 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1





Walsh-Hadamard transform examples

I Examples:
I 00000. . . -> 00000. . .
I 11111. . . -> +0000. . .
I 01010. . . -> +-000. . .
I 10101. . . -> ++000. . .
I 00010001. . . -> ++++000. . . .

I i.e. the i-th bit is activated by a periodicity of length i
I The details are sensitive to the “phase”, i.e. exactly where in

the sequence the periodicity lies.



Walsh-Hadamard transform example



Other transforms

I Other transforms exist and could be useful. For example:
I Wavelets (time and space decomposition)
I Laplace transform
I Sine/ Cosine transforms
I Hankel transform (radial basis function)
I Polynomials
I . . . etc

I All you need is a basis function and you have a transform.



Reflection

I What role could transforms play in classification?
I What other uses could you put them to? How do you know if

they are working?
I Can you think of other classes of transform that could be

useful? How would you test whether they were?
I How do these transforms generalise? What parameters does

this introduce?
I By the end of the course, you should:

I Be able to use transforms in practical cyber security questions
I Be able to make appropriate judgement of whether a transform

is worth trying
I Be able to work with the Walsh-Hadamard transform



Signposting

I Transforms are clearly linked to PCA from Block 03
I Next comes Density Estimation
I Further reading:

I Nonparametric Statistics by Eduardo García Portugués
I Basis Expansions: Chapter 5 of The Elements of Statistical

Learning: Data Mining, Inference, and Prediction (Friedman,
Hastie and Tibshirani).

https://bookdown.org/egarpor/NP-UC3M/
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf

