
Clustering Part 2

Daniel Lawson University of Bristol

Lecture 03.2.2 (v1.0.2)

Signposting

I In Part 1 we covered:
I How Clustering methods are organised,
I Hierarchical clustering

I In Part 2 we cover:
I K-means
I Gaussian Mixture Modelling
I Density-based model-free clustering (dbscan)

K-means clustering

I Probably the most widely used clustering algorithm.
I Randomly (or otherwise) initialise K locations as initial cluster

means µk

I Iteratively, until convergence:
1. Assign each sample xi to its closest cluster

c(xi) = mink d(xi, µk)
2. Set each cluster mean to the mean of its members

µk = 1
nk

∑
i:c(xi)=k xi

I In practice, we:
I Use a large number of starting values
I Use “intelligent” initial guesses

I Computational complexity (per clustering) is O(N2) but
getting convergence is harder.
I Approximate O(N) algorithms exist.

K-means clustering

K-means clustering

Beyond K-means

I Soft K-means: replace assignment with cluster probabilities.
I Typically better convergence than hard K-means.

I K-means assumes that clusters are spherical.
I This might work when clusters are well-separated or the data

scaled in the right way.
I Sometimes high dimensionality makes this more plausible.

I Gaussian Mixture Modelling (GMM) allows ellipsoid clusters to
be fit instead.

I GMMs are a more general class of model than K-means and
therefore perform uniformly better when used correctly
I There are model selection issues, resolved by CV or information

criteria (BIC)

Expectation Maximization

I The Expectation-Maximization (EM) is an optimization tool for
problems with a latent parameter Z of the form:

L(θ,X) = p(X|θ) =
∫
p(X,Z|θ)dZ

I Where we wish to maximise the Likelihood L(θ,X) with
respect to θ, marginalising out Z.

I In soft K-means, Z is the probability of belonging to each
cluster; θ is the location of the clusters.

I EM solves this by iteratively:
I Computing the Expected value of the latent E(Z|θ),
I Computing the Maximum likelihood estimate p(X,Z|θ).

I EM provably always improves L(θ,X).

https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm

Gaussian Mixture Modelling

Gaussian Mixture Modelling

I Randomly initialise K locations as initial cluster means µk,
each with an initial covariance Σk (can just be spherical)

I Iteratively, until convergence:
1. Compute the density of each cluster at each point

dik = Kk(xi|µk,Σk)
2. Compute the probability of each cluster for each point:

pik = dik/
∑

k′ dik′

3. Update the cluster parameters accounting for the probabilistic
memberships

I In practice, we still want to:
I Use several starting values
I Use “intelligent” initial guesses

I probabilistic assignment speeds convergence over K-means
I Computational complexity is O(N2), though the constant is

larger than for K-means. What is the dependency on K?

Gaussian Mixture Modelling

I GMMs work very well on a range of problems.
I However, choosing Σ and K can be awkward
I One solution is to use a (semi)Bayesian paradigm:

I Fit the clusters using EM as in regular GMMs
I Use Bayesian Model selection (BIC) to choose a model for Σ

and select K
I Σ choices: ellipsoid vs circular, volume, shape, orientation
I Changes the dimension of Σ, hence affects BIC

I This isn’t reliable model selection for whether GMM is
appropriate, but it is good selection for what shape Σ to use

I In R: library(mclust)

Example: K-means clustering

I Run K-means clustering on the whole example dataset:
km.all.raw=lapply(1:10,function(i){

km=kmeans(testdata_all_scaled,centers=i,nstart=10)
})

I Spectral clustering just means running the same clustering
algorithm on the top PCs in a PCA/SVD

km.all.svd=lapply(1:10,function(i){
km=kmeans(testdata_all.svd$u,centers=i,nstart=10)

})

Example: K-means clustering

I Run K-means clustering on the whole example dataset:
km.all.raw=lapply(1:10,function(i){

km=kmeans(testdata_all_scaled,centers=i,nstart=10)
})

I Spectral clustering just means running the same clustering
algorithm on the top PCs in a PCA/SVD

km.all.svd=lapply(1:10,function(i){
km=kmeans(testdata_all.svd$u,centers=i,nstart=10)

})

Example: GMM using mclust

library("mclust")
mc.all=mclustBIC(testdata_all.svd$u,G=1:20)
mclustBIC Compares lots of models
mc.assignments=lapply(1:20,function(i){

tmp=mclustModel(testdata_all.svd$u,mc.all,G=i)
apply(tmp$z,1,which.max)

}) # extract the results for the best models

Example: GMM using mclust: diagnostics

DBSCAN

I “Density-Based Spatial Clustering of Applications with Noise”1.
I Clusters arbitrary shapes that are above some threshold density.
I Uses K-Nearest-Neighbours (next session) to approximate

density.
I “dense” points have many close neighbours, “outliers” have few

I Uses KD-trees to efficiently approximate k-NN calculation.
I changes complexity from O(N2) to O(N log(N)); nb relatively

slow still as have to do this multiple times. . .
I Overview: Initialise: Assign a cluster to each “dense” point.

Then iterate:
1. All neighbours of a cluster are also in that cluster
2. Merge joined clusters
3. Update neighbours of each cluster

1Kriegel, Hans-Peter, Sander & Xu (1996). “A density-based algorithm for
discovering clusters in large spatial databases with noise”

HDBSCAN

I DBSCAN is limited because all clusters have to have the same
minimum density threshold

I This sometimes leads to clusters being ignored as noise
I Many variants exist to address this
I One of the most important is HDBSCAN2 : An extension of

DBSCAN allowing variation in density across clusters

2McInnes & Healy (2017), “Accelerated Hierarchical Density Based
Clustering”

Example: DBSCAN in R

library("dbscan")
Hardest part is choosing the threshold
test=kNNdist(testdata_all.svd$u, k = 5)
testmin=apply(test,1,min)
plot(sort(testmin[testmin>1e-8]),log="xy")
abline(h=0.001) # we chose
abline(h=0.01) # would give bigger clusters
abline(h=0.0001) # would give smaller clusters
kNNdistplot(testdata_all.svd$u, k = 5)
This is actually running it (quite slow)
dbscanres=dbscan(testdata_all.svd$u,0.001)

Example: DBSCAN clustering

Example: K-means clustering

Example: K-means spectral clustering

Example: GMM spectral clustering

Example: generating the plots

png(paste0("../media/03.2.5-Clustering_kmeans_svd.png"),
height=1000,width=1600)

par(mfrow=c(2,5))
for(i in 1:10){

plot(testdata_all.svd$u[,1],
testdata_all.svd$u[,2],xlab="",axes=F,
ylab="",
col=km.all.svd[[i]]$cluster,pch=19,cex=0.5)

title(main=paste("K=",i),cex.main=2)
}
dev.off()

Important extensions: How many clusters, really?

I Any model selection approach can allow selection of the
number of clusters.

I When the model is supposed to be true then careful model
selection is important. The usual model selection rules apply.

I When the model is for convenience then the clustering is
just a tool for understanding.
I The number of clusters is a tuning parameter that can be

chosen by convenience
I Sensitivity analysis should be used to investigate whether it

matters.

Scikit Learn Diagram

https://scikit-learn.org/stable/modules/clustering.html

Reflection

I What is a cluster?
I When does it make sense to do clustering? When does it not?
I How does the scale of data interact with the choice of

clustering algorithm?
I When might spectral clustering work, when direct clustering

does not? And vice-versa?
I By the end of the course, you should:

I Be able to describe the key approaches to clustering
I Be able to interpret common hierarchical clustering algorithms
I Be able to reason about the appropriate clustering algorithm for

a particular problem

Signposting

I There is a workshop associated with this lecture and PCA.
I Next week we cover nonparametric methods: transforms, kernel

methods, and The Kernel Trick.
I References:

I Tibsherani’s Data Mining lecture notes (Lecture 2 and Lecture
5)

I 5 clustering algorithms you need to know
I The fastcluster packages for R and python implements “fastest”

O(N2) versions of hierarchical clustering.
I Python resources comparing hdbscan

http://www.stat.cmu.edu/~ryantibs/datamining
http://www.stat.cmu.edu/~ryantibs/datamining/lectures/05-clus2.pdf
http://www.stat.cmu.edu/~ryantibs/datamining/lectures/06-clus3.pdf
http://www.stat.cmu.edu/~ryantibs/datamining/lectures/06-clus3.pdf
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
http://danifold.net/fastcluster.html?section=1
https://hdbscan.readthedocs.io/en/latest/comparing_clustering_algorithms.html

