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Signposting

I We have made latent structures using SVD and PCA.
I This dimensionality reduction is essential for many types of

analysis including clustering.
I Clustering is one of the most fundamental data analysis tools

and the ideas form the cornerstone of more complex
approaches.

I In Part 1 we cover:
I How Clustering methods are organised,
I Hierarchical clustering

I In Part 2 we cover:
I K-means
I Gaussian Mixture Modelling
I Density-based model-free clustering (dbscan)



Intended Learning Outcomes

I ILO1 Be able to access and process cyber security data
into a format suitable for mathematical reasoning

I ILO2 Be able to use and apply basic machine learning tools
I ILO3 Be able to make and report appropriate inferences from

the results of applying basic tools to data



Clustering

I Clustering contains enough complexity to cover several courses
by itself.

I You are likely to use clustering in several projects, sometimes as
the goal and sometimes as a data processing step.

I We will talk about computational complexity. This is
covered in full detail later in the course. Today, O(f(N))
means that “the algorithm run-time increases as f(N),
ignoring complexity” (for the worst case data).



Clustering paradigms
I Most clustering procedures fit one or more of these paradigms:
I Algorithmic clustering

I An algorithm is run which outputs a clustering of the data
I Usually fast
I Usually data-type specific
I Often hard to interpret

I Distance-based clustering
I Distances between all items are considered and then clustered

somehow
I Widely applicable
I Often can be linked to a model

I Model-based clustering
I Explicit objective function used
I Can be slower - unless a convenient model is chosen
I Can be made to solve a specific task, handle uncertainty
I Most appropriate when you want the clusters to “mean

something”



Most important clustering methods

I Algorithmic:
I graph-cutting methods, e.g. modularity
I space partitioning, e.g. KD-trees, etc

I Hierarchical, distance-based:
I single linkage
I complete linkage
I average linkage

I Model-based:
I k-means (though was introduced as an algorithm)
I Gaussian mixture modelling (GMM)
I Bayesian clustering



Algorithmic clustering

Algorithmic approaches are best when used with a goal that exploits
the structure provided. We’ll visit them as needed. For example:
I There are really fast graph clustering algorithms. The

clusters are not always “best” but they are useful.
I See for example modularity maximisation, min-cut
I General problem: community detection

I Some really useful data structures in computer science
resemble clustering.
I KD-trees are a binary splitting method for Rd

I They partition the space using the specified points
I See also Quadtree, R-tree, etc.
I They solve lookup problems; for example, fast recall of

approximate nearest-neighbours.



Hierarchical clustering

This comes in two flavours:
I Divisive clustering: start with all objects in a single cluster

and split them;
I Agglomerative clustering: start with all objects in a different

cluster and merge them.
I In general divisive clustering is harder to “get right” so we

focus on agglomerative methods. Broadly, these:
1. start with N clusters ci; defined by the original points
2. choose the closest two clusters a and b to merge based on a

distance measure dab

3. update the locations and hence the distances of the clusters
according to some rule.



Distances

I The choice of distance is very important for clustering. Here
are some common ones:

Model Norm Equation

Euclidean ‖x− y‖2
√∑n

i=1(xi − yi)2

Squared Euclidean ‖x− y‖22
∑n

i=1(xi − yi)2

Manhattan ‖x− y‖1
∑n

i=1|xi − yi|
Maximum ‖x− y‖∞ maxi|xi − yi|
Mahalanobis ‖x− y‖M [(~x− ~y)C−1(~x− ~y)T )]1/2

I Note the connection of the Mahalanobis norm to PCA1!
I See also: Hamming Distance (for binary variables), edit

distance, etc.

1“The squared Mahalanobis distance is equal to the sum of squares of the
scores of all non-zero standardised principal components.”

https://onlinelibrary.wiley.com/doi/full/10.1002/cem.2692
https://onlinelibrary.wiley.com/doi/full/10.1002/cem.2692


Metrics and related objects

I Distances d : X ×X → [0,∞) are a Metric and satisfy:
I d(x, y) = d(y, x): symmetry
I d(x, y) ≥ 0: non-negativity
I d(x, y) = 0⇔ x = y: (the distance is only zero if the elements

are the same)
I d(x, z) ≤ d(x, y) + d(y, z): Triangle inequality

I Some methods can work with divergences, which need not
satisfy symmetry or the Triangle inequality.

I If instead d(x, z) ≤ max(d(x, y), d(y, z)) the d is called
ultrametric. This is important for certain types of tree.



Hierarchical clustering

I Hierarchical clustering methods report trees as their output.
I We select the threshold k (a “tree cut”) to select the number

of clusters
I Many criteria exist to do this selection in an automated way:

I Within-vs Between cluster variation2

I Gap statistic3

I etc . . .
I Why not use Cross validation!

2Calinski and Harabasz (1974), “A dendrite method for cluster analysis”
3Tibshirani et al. (2001), “Estimating the number of clusters in a data set via

the gap statistic”



Linkage clustering



Single linkage clustering



Single linkage clustering

I Hierarchical clustering where we set

da,b = min
i∈a,j∈b

di,j

I i.e. the distance is the closest point in each cluster.
I The naive implementation would take O(N3).
I Good implementations are O(N2) (e.g. SLINK, 1973)4,

Kruskal’s algorithm for minimum spanning trees.

4Sibson 1973, “SLINK: An optimally efficient algorithm for the single-link
cluster method”.



Complete linkage clustering



Complete linkage clustering

I Hierarchical clustering where we set

da,b = max
i∈a,j∈b

di,j

I i.e. the distance is the furthest point in each cluster.
I The naive implementation would take O(N3).
I Good implementations are O(N2) (CLINK, 1977)5.

5Defays 1977, “An efficient algorithm for a complete link method”.



Average linkage clustering



Average linkage clustering

I Also known as “Unweighted Pair Group Method with
Arithmetic mean” (UPGMA).

I Hierarchical clustering where we set

da,b = Ei∈a,j∈b(di,j)

I i.e. the distance is the average distance between each cluster.
I The naive implementation would take O(N3).
I Good implementations are O(N2 log(N)).
I It can be “meaningful”:

I the recovered tree is the “true tree” if the clusters diverged at
constant rate.

I This is plausible in evolution, for example.



Hierarchical Clustering: See also

I Centroid Linkage: Define centres of each cluster, compute
distance to cluster centres

I Minimax Clustering6 : Minimise the maximum radius to the
centre of each group

I NB: Minimax is an important concept in Machine Learning!

6Bien et al. (2011), “Hierarchical Clustering with Prototypes via Minimax
Linkage”



Implementations in R

library("hclust") # default hierarchical clustering
library("fastcluster") # faster implementations

I Implementations are important for computational complexity
and speed7

7http://danifold.net/fastcluster.html?section=1



Signposting

I We’ll go straight to 03.2.2 Clustering Part 2 for:
I K-means
I Gaussian Mixture Modelling
I Density-based model-free clustering (dbscan)


