Clustering Part 1

Daniel Lawson University of Bristol

Lecture 03.2.1 (v1.0.1)

Signposting

- We have made latent structures using SVD and PCA.
- This dimensionality reduction is essential for many types of analysis including clustering.
- Clustering is one of the most fundamental data analysis tools and the ideas form the cornerstone of more complex approaches.
- ▶ In Part 1 we cover:
 - ► How Clustering methods are organised,
 - Hierarchical clustering
- ▶ In Part 2 we cover:
 - K-means
 - ► Gaussian Mixture Modelling
 - Density-based model-free clustering (dbscan)

Intended Learning Outcomes

- ► ILO1 Be able to access and process cyber security data into a format suitable for mathematical reasoning
- ► ILO2 Be able to use and apply basic machine learning tools
- ► ILO3 Be able to make and report appropriate inferences from the results of applying basic tools to data

Clustering

- Clustering contains enough complexity to cover several courses by itself.
- ► You are likely to use clustering in several projects, sometimes as the goal and sometimes as a data processing step.
- ▶ We will talk about **computational complexity**. This is covered in full detail later in the course. Today, O(f(N)) means that "the algorithm run-time increases as f(N), ignoring complexity" (for the worst case data).

Clustering paradigms

- Most clustering procedures fit one or more of these paradigms:
- Algorithmic clustering
 - ► An algorithm is run which outputs a clustering of the data
 - Usually fast
 - Usually data-type specific
 - Often hard to interpret

Distance-based clustering

- Distances between all items are considered and then clustered somehow
- ► Widely applicable
- Often can be linked to a model

► Model-based clustering

- ► Explicit objective function used
- ► Can be slower unless a convenient model is chosen
- Can be made to solve a specific task, handle uncertainty
- ► Most appropriate when you want the clusters to "mean something"

Most important clustering methods

- Algorithmic:
 - graph-cutting methods, e.g. modularity
 - space partitioning, e.g. KD-trees, etc
- ► Hierarchical, distance-based:
 - ► single linkage
 - complete linkage
 - average linkage
- ▶ Model-based:
 - k-means (though was introduced as an algorithm)
 - Gaussian mixture modelling (GMM)
 - Bayesian clustering

Algorithmic clustering

Algorithmic approaches are best when used with a goal that exploits the structure provided. We'll visit them as needed. For example:

- ► There are really fast graph clustering algorithms. The clusters are not always "best" but they are useful.
 - ► See for example modularity maximisation, min-cut
 - ► General problem: community detection
- Some really useful data structures in computer science resemble clustering.
 - ightharpoonup KD-trees are a binary splitting method for \mathbb{R}^d
 - ► They partition the space using the specified points
 - See also Quadtree, R-tree, etc.
 - ► They solve lookup problems; for example, fast recall of approximate nearest-neighbours.

Hierarchical clustering

This comes in two flavours:

- ▶ **Divisive clustering**: start with all objects in a single cluster and split them;
- ► **Agglomerative clustering**: start with all objects in a different cluster and merge them.
- In general divisive clustering is harder to "get right" so we focus on agglomerative methods. Broadly, these:
 - 1. start with N clusters c_i ; defined by the original points
 - 2. choose the closest two clusters a and b to merge based on a distance measure d_{ab}
 - update the locations and hence the distances of the clusters according to some rule.

Distances

► The choice of distance is very important for clustering. Here are some common ones:

Model	Norm	Equation
Euclidean	$ x-y _2$	$\frac{1}{\sqrt{\sum_{i=1}^{n}(x_i-y_i)^2}}$
Squared Euclidean	$ x-y _2^{\bar{2}}$	$\sum_{i=1}^{n} (x_i - y_i)^2$
Manhattan	$ x - y _1$	$\sum_{i=1}^{n} x_i - y_i $
Maximum	$ x-y _{\infty}$	$\max_i x_i - y_i $
Mahalanobis	$ x-y _M$	$[(\vec{x} - \vec{y})C^{-1}(\vec{x} - \vec{y})^T)]^{1/2}$

- ▶ Note the connection of the Mahalanobis norm to PCA¹!
- ► See also: Hamming Distance (for binary variables), edit distance, etc.

¹"The squared Mahalanobis distance is equal to the sum of squares of the scores of all non-zero standardised principal components."

Metrics and related objects

- ▶ Distances $d: X \times X \to [0, \infty)$ are a **Metric** and satisfy:
 - ightharpoonup d(x,y) = d(y,x): symmetry
 - ▶ $d(x,y) \ge 0$: non-negativity
 - ▶ $d(x,y) = 0 \Leftrightarrow x = y$: (the distance is only zero if the elements are the same)
 - \blacktriangleright $d(x,z) \leq d(x,y) + d(y,z)$: Triangle inequality
- Some methods can work with divergences, which need not satisfy symmetry or the Triangle inequality.
- ▶ If instead $d(x, z) \le \max(d(x, y), d(y, z))$ the d is called **ultrametric**. This is important for certain types of tree.

Hierarchical clustering

- ► Hierarchical clustering methods report trees as their output.
- ▶ We select the threshold k (a "tree cut") to select the number of clusters
- ▶ Many criteria exist to do this selection in an automated way:
 - ► Within-vs Between cluster variation²
 - ► Gap statistic³
 - etc . . .
 - Why not use Cross validation!

²Calinski and Harabasz (1974), "A dendrite method for cluster analysis"

³Tibshirani et al. (2001), "Estimating the number of clusters in a data set via the gap statistic"

Linkage clustering

Single linkage clustering

Single linkage clustering

► Hierarchical clustering where we set

$$d_{a,b} = \min_{i \in a, j \in b} d_{i,j}$$

- ▶ i.e. the distance is the **closest point** in each cluster.
- ▶ The naive implementation would take $O(N^3)$.
- ▶ Good implementations are $O(N^2)$ (e.g. SLINK, 1973)⁴, Kruskal's algorithm for minimum spanning trees.

 $^{^4\}mbox{Sibson 1973},$ "SLINK: An optimally efficient algorithm for the single-link cluster method".

Complete linkage clustering

Complete linkage clustering

Hierarchical clustering where we set

$$d_{a,b} = \max_{i \in a, j \in b} d_{i,j}$$

- ▶ i.e. the distance is the **furthest point** in each cluster.
- ▶ The naive implementation would take $O(N^3)$.
- ▶ Good implementations are $O(N^2)$ (CLINK, 1977)⁵.

⁵Defays 1977, "An efficient algorithm for a complete link method".

Average linkage clustering

Average linkage clustering

- Also known as "Unweighted Pair Group Method with Arithmetic mean" (UPGMA).
- ► Hierarchical clustering where we set

$$d_{a,b} = \mathbb{E}_{i \in a, j \in b}(d_{i,j})$$

- ▶ i.e. the distance is the average distance between each cluster.
- ▶ The naive implementation would take $O(N^3)$.
- ▶ Good implementations are $O(N^2 \log(N))$.
- ► It can be "meaningful":
 - the recovered tree is the "true tree" if the clusters diverged at constant rate.
 - ► This is plausible in evolution, for example.

Hierarchical Clustering: See also

- ► Centroid Linkage: Define centres of each cluster, compute distance to cluster centres
- ► Minimax Clustering⁶ : Minimise the maximum radius to the centre of each group
- ▶ NB: Minimax is an important concept in Machine Learning!

 $^{^6}$ Bien et al. (2011), "Hierarchical Clustering with Prototypes via Minimax Linkage"

Implementations in R

```
library("hclust") # default hierarchical clustering
library("fastcluster") # faster implementations
```

► Implementations are important for computational complexity and speed⁷

⁷http://danifold.net/fastcluster.html?section=1

Signposting

- ► We'll go straight to **03.2.2 Clustering Part 2** for:
 - K-means
 - Gaussian Mixture Modelling
 - Density-based model-free clustering (dbscan)