
Latent Structures and PCA

Daniel Lawson University of Bristol

Lecture 03.1 (v1.0.2)

Signposting

I In Block 2, we covered:
I Regression
I Classical Statistical Testing
I Resampling - Bootstrap and Cross-Validation
I Model Selection

I These may be applied directly to data, but what if this is high
dimensional?
I These methods and more can be used in dimensionality

reduced space.

Intended Learning Outcomes

I ILO2 Be able to use and apply basic machine learning tools
I ILO3 Be able to make and report appropriate inferences from

the results of applying basic tools to data

Latent Structures

I It is often useful to think of data X being represented in some
(usually lower-dimensional) space θ.

I θ is the latent space for X.
I Examples:

I Parameters: Xi ∼ f(θi) for some model f
I Kernel representation: Xi =

∑K
j=1 K(θi)

I Factor analysis
I Spectral decomposition, Principal Components Analysis,

Singular Value Decomposition

Latent Structure

I What makes this a latent space instead of a parameterisation
is the modelling done on that space.

I i.e. it is constructed to mean something
I If it is done with the intention of making similar data be close

then we might call this an embedding
I Much care is needed around the words “similar” and “close”!

PCA Example from Stack Exchange

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579#1405790

Covariance

I Let X be an n by m matrix.
I Consider that X has been mean centred, so that E(X·,j) = 0

for columns j. Then:

C = Cov(X) = 1
n− 1X

TX

I this is an unbiased estimator; the factor 1/(n− 1) arises
because we used the data to estimate the mean.

I C is an m by m matrix.
I We might also standardize the variance so that Var(X·j) = 1.

Principal Components Analysis

I Consider data X for which we seek the decomposition:

C = Cov(X) = UΣUT

I Where:
I D is a diagonal matrix of the m eigenvalues.
I U is a matrix of m eigenvectors in columns.

I We’ll construct this matrix by sequentially:
I Finding a projection of X onto a k dimensional subspace;
I that maximises the explained variance, or equivalently,

minimises the squared error in the prediction;
I conditional on this being orthogonal to all previous subspaces.

One dimensional projection

I We will project X onto a subspace U .

I In one dimension this is a line defined by ~u of unit length
through the origin.

I The projection of ~xi onto ~u is (~xi · ~u) in the new coordinate
system.

I Recall ~x · ~y = |~x||~y| cos(θ)

One dimensional projection

I We will compute the projection in the old coordinate system,
written (~xi · ~u)~u.

I Using the properties of ~u the residuals are therefore:

||~xi − (~xi · ~u)~u||2 = (~xi − (~xi · ~u)~u) · (~xi − (~xi · ~u)~u)
(1)

= ~xi · ~xi − 2(~u · ~xi)2 + (~u · ~xi)2(~u · ~u)
(2)

= ~xi · ~xi − (~u · ~xi)2

(3)

One dimensional projection

I Averaging over all vectors:

MSE(~u) = 1
n

n∑
i=1

~xi · ~xi − (~u · ~xi)2,

I But the first term is constant, so we therefore are seeking to
maximise:

1
n

n∑
i=1

(~u · ~xi)2,

I This is the second moment of ~u · ~xi which can be written as:

E(~u · ~xi)2 + Var(~u · ~xi).

I However, the mean of the projection is zero by construction so
minimising the MSE is equivalent to maximising the
variance explained.

Multiple dimensions

I To work with multiple dimensions:
I replace the single vector projection (~u · ~xi)~u with a sum over all

dimensions
∑K

k=1(~uk · ~xi)~uk.
I In matrix notation, with our conventions, ~U = XU
I It is straightforward to show that the cross terms cancel out.
I This is due to the orthogonality constraint.

Maximising variance

I Using matrix notation,

Var(~U) = 1
n− 1(XU)T (XU) (4)

= UT XTX
n− 1U (5)

= UTCU (6)

I Where C is the covariance.
I We need to constrain the search over U to look for unit

vectors.
I We do this with a Lagrange multiplier λ, which allows

unconstrained optimisation of a different problem.
I Lagrange multipliers are important tools for many optimisation

problems in Data Science.

https://en.wikipedia.org/wiki/Lagrange_multiplier

Lagrangian Calculus

Optimisation

I For simplicity we’ll just add the k-th dimension, conditioning
on orthogonality to the previous k − 1
I This is how many algorithms work in practice

I Constraint: uTu = 1. Therefore

L(u, λ) = uT cu− λ(uTu− 1) (7)
∂L
∂λ

= uTu− 1 (8)

∂L
∂u = 2cu− 2λu (9)

I Which can be solved for when the derivatives are zero to get

uTu = 1 (10)
cu = λu (11)

PCA

I We have shown that the eigenvector u and eigenvalue λ
solve:

cu = λu

I The eigenvectors can be arranged into a matrix U with
eigenvectors on the columns, and the eigenvalues into a
diagonal matrix Σ. Then:

C = UΣUT

I (Care needs to be taken with zero/repeated eigenvalues.)

Interpretation

I Our basis U is orthonormal, and
I As C is a covariance matrix, it is symmetric.
I Therefore the eigenvectors are orthogonal.
I The eigenvalue (i.e. λk) is the variance explained by the
k-th PC.

I The proportion of variance explained by K PCs is
R2 =

∑K

k=1 λk∑M

m=1 λm
.

I If the data are really in a K dimensional subspace, the
eigenvalues beyond that should be 0.

Singular value decomposition

I PCA and SVD are related:

SVD(X) = UDV T

I and therefore

1
n− 1X

TX = 1
n− 1V D

TUTUDV T = V
DTD

n− 1V
T = V ΣV T

I where Σ = DTD/(n− 1) are both diagonal matrices.

Data preparation

Make a 4 column dataset and log-transform
testdata=conndata[,c("orig_bytes","resp_bytes",

"orig_ip_bytes","resp_ip_bytes")]
testdata[testdata=="-"]=0
testdata[testdata=="0"]=0
for(i in 1:4) testdata[,i]=log10(as.numeric(testdata[,i])+1)
rownames(testdata)=NULL

Make a test dataset for example purposes
set.seed(1)
myindex=sample(1:dim(testdata)[1],2000)
testdata_sample=testdata[myindex,]
And categories, for plotting purposes
testdatacat=as.factor(paste(conndata[,"proto"],

conndata[,"service"],sep="_"))[myindex]

Data preparation

Make a 4 column dataset and log-transform
testdata=conndata[,c("orig_bytes","resp_bytes",

"orig_ip_bytes","resp_ip_bytes")]
testdata[testdata=="-"]=0
testdata[testdata=="0"]=0
for(i in 1:4) testdata[,i]=log10(as.numeric(testdata[,i])+1)
rownames(testdata)=NULL

Make a test dataset for example purposes
set.seed(1)
myindex=sample(1:dim(testdata)[1],2000)
testdata_sample=testdata[myindex,]
And categories, for plotting purposes
testdatacat=as.factor(paste(conndata[,"proto"],

conndata[,"service"],sep="_"))[myindex]

Do the decompositions

The direct (naive) way to standardize
testdata_scaled <- apply(testdata_sample, 2, scale)

But we need to standardize *samples*
testdata_t=t(testdata_scaled)
testdata_t_scaled <- apply(testdata_t, 2, scale)

Different ways to compute Spectral decompositions
testdata.cov <- cov(testdata_t_scaled)
testdata.eigen <- eigen(testdata.cov)
testdata.cov.svd <- svd(testdata.cov)

Faster: SVD on the original data matrix
testdata.svd <- svd(testdata_t_scaled)
testdata.prcomp <- prcomp(testdata_t_scaled)

Do the decompositions

The direct (naive) way to standardize
testdata_scaled <- apply(testdata_sample, 2, scale)

But we need to standardize *samples*
testdata_t=t(testdata_scaled)
testdata_t_scaled <- apply(testdata_t, 2, scale)

Different ways to compute Spectral decompositions
testdata.cov <- cov(testdata_t_scaled)
testdata.eigen <- eigen(testdata.cov)
testdata.cov.svd <- svd(testdata.cov)

Faster: SVD on the original data matrix
testdata.svd <- svd(testdata_t_scaled)
testdata.prcomp <- prcomp(testdata_t_scaled)

PCA/SVD/Covariance plots

Plotting code

png("../media/03.1.1-EigenExample.png",height=500,width=800)
par(mfrow=c(1,3))
plot(testdata.eigen$vectors[,1],
testdata.eigen$vectors[,2],xlab="PC1",ylab="PC2",

main="eigen(cov(X))$vectors",
col=as.numeric(testdatacat),pch=19,cex=0.5)

plot(-testdata.cov.svd$u[,1],
-testdata.cov.svd$u[,2],xlab="-PC1",
ylab="PC2",main="svd(cov(X))$u",
col=as.numeric(testdatacat),pch=19,cex=0.5)

plot(-testdata.svd$v[,1],
-testdata.svd$v[,2],xlab="-PC1",ylab="-PC2",
main="svd(X)$v",
col=as.numeric(testdatacat),pch=19,cex=0.5)

dev.off()

Scaling matters

testdata.direct.svd <- svd(testdata_scaled)
png("../media/03.1.2-SVDscaling.png",height=500,width=800)
par(mfrow=c(1,2))
plot(-testdata.direct.svd$u[,1],

-testdata.direct.svd$u[,2],
xlab="-PC1",ylab="-PC2",main="svd(Xraw)$u",
col=as.numeric(testdatacat),pch=19,cex=0.5)

plot(-testdata.svd$v[,1],
-testdata.svd$v[,2],xlab="-PC1",
ylab="-PC2",main="svd(X)$v",
col=as.numeric(testdatacat),pch=19,cex=0.5)

dev.off()

Scaling matters

Some notes

I The mean usually shows up in PC1 if you leave it in
I Here, mean centring X to X̃ is weird; its re-weighting features

differently for each observation!
I SV D(X) and SV D(Cov(X̃)) usually contain the same

structure, elucidated differently
I When there are many fewer features than observations, working

with X directly is much faster
I This is because we work with an M2 covariance matrix.
I If the number of features is higher than the number of

datapoints, working with Covariance makes sense.

Full data

Full data

testdata_all_scaled <- apply(testdata, 2, scale)
dim(testdata_all_scaled)
[1] 226943 4
testdata_all.svd=svd(testdata_all_scaled)

testdatacat_all <-
as.factor(paste(conndata[,"proto"],
conndata[,"service"],sep="_"))

How many PCs?

I This last insight is often used to select only those PCs whose
eigenvalues are “large enough” to justify inclusion. There are
many procedures, including:
I scree plot, looking for an elbow in the distribution
I EVs > 1, justified by random graph theory
I Tracey-Widom theory, with a similar prediction
I Horn’s criterion, based on simulating random matrices for the

remaining matrix structure after K are chosen
I Velicer’s MAP criterion, similar

I In practice they are all similar, and any can be “wrong”, so
common sense should be applied.

I What is always true is that Eigenvectors associated with
Eigenvalues that are “too small” will contain some noise, even
if they still contain a signal.

How many PCs?

I Here we have only 4 features. And we mean centred, which
removes a degree of freedom. So the data should lie on a 3D
subspace:

> round(testdata.eigen$values[1:4],8)
[1] 1859.25164 124.70157 16.04679 0.00000
> round(((testdata.svd$d)ˆ2)/3,8)
[1] 1859.25164 124.70157 16.04679 0.00000

I Scaling by the number of features is not important for the SVD
when computing the proportion of variance explained. Just
square the singular values.

Variance Explained

Important properties:

I If X is positive definite, its eigenvalues are > 0.
I If X is positive semi-definite, its eigenvalues are ≥ 0.
I positive definite: If ∀v 6= 0 then v · xv > 0
I positive semi-definite: If ∀v 6= 0 then v · xv ≥ 0
I The matrix A is orthogonal if AT = A−1. This is true iff all

column vectors of A are orthonormal, and (equivalently) the
row vectors are too. All eigenvalues of an orthogonal matrix
are 1.

I If X is square and non-degenerate (distinct eigenvalues), its
eigenvectors U form an orthonormal basis.

Projections are idempotent

I Once you project a vector into a subspace, projecting it again
does nothing. Such projections P are called idempotent:

PK = P

I Spectral projections have this property.

R commands for matrix operations

A %*% B # matrix multiplication
t(A) # matrix transpose
diag(A) # diagonal vector of A
diag(x) # a diagonal matrix formed of the vector x
det(A) # determinant
sum(diag(A)) # trace
solve(A) # matrix inverse
eigen(A) # Eigenvalue decomposition
svd(A) # Singular Value Decomposition

Reflection

I You should:
I Be able to intuitively explain PCA, and perform simple

calculations using it
I Be able to relate PCA to SVD both mathematically and

intuitively
I Be able to deploy either appropriately on real data

I What is Spectral Decomposition doing? Why is it a good idea?
I How is it different to a model?
I What might it mean that two datapoints are “close” in a PCA

plot?
I What might go wrong when making a 2-D PCA plot?

Signposting

I We will look at clustering - both on the raw data but also on
PCs, which can often be used to avoid discrete features posing
a problem as well as being efficient.

I We’ll explore PCA in the Workshop.
I Further reading could include:

I Cosma Shalizi’s Advanced Data Analysis, Lecture 18
I Boyd and Vandenberghe: Convex Optimization is an excellent

and thorough resource.
I I showed Kalman: Leveling with Lagrange: An Alternate View

of Constrained Optimization

https://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch18.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://www.tandfonline.com/doi/abs/10.1080/0025570X.2009.11953617
https://www.tandfonline.com/doi/abs/10.1080/0025570X.2009.11953617

