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Model Selection

I Imagine that we have run two different inference procedures
(models) on our data.

I We want to decide which of these gives the best description of
the data.
I (For the moment we will pretend we want to know which one is

right. . . )
I Model selection formalises how to make this assessment.
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Overview

I From Residuals. . .
I Towards Leave one out Cross Validation. . .
I Via Information Criteria. . .
I To k-Fold Cross Validation
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General considerations

I To make Cross-Validation work, we need to be able to define
our inference goal cleanly. Some scenarios:
I Same source, single datapoint: Within a single datastream,

how well can we predict the next point?
I Same source, segment of data: Within a single datastream,

how well could we predict everything that happens within an
hour?

I New but understood source: We have multiple datastreams,
each of which might be different but all are generated by a
similar process. How well can we predict a new such datasource?

I Unexpected source: We have many classes of datastream.
How well can we predict what would happen on a new class of
datastream?
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Motivation: Residuals

I The residual sum of squares for n predictions of a univariate
y:

R2 =
n∑

i=1
(yi − ŷi)2

I The expected value of the prediction error E(e2) = R2/n.
I What happens if compare two models M1 and M2, where
M1 is a subset of M2?
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Linear Models - Model selection

I For illustration, consider

Y = x1A1 + ε1

I and
Y = x1A1 + x2A2 + ε2.

I Unless x2 = 0 or x2 ≡ x1, then ε22 will be smaller than ε21.
I This is an example of a more general rule: larger models

always have better predictions.
I So prediction error is OK to use to fit models with the same

dimension, but is incomplete for model selection.
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Cross-Validation Motivation

I Usually we are not interested in properties of our sample.
I We instead wish to know how our inference will generalise to

new samples.
I The most straight forward way to predict how a model

generalises is to test in held-out data.
I Cross Validation is a procedure to leave-out some data for

testing.
I How much data?

I Leave-one-out Cross-Validation (LOOCV) leaves out one
datapoint at a time for testing.

I k-Fold Cross Validation (k-fold CV) keeps a fraction
(k − 1)/k of the data for learning parameters and 1/k for
testing.
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Prediction accuracy in linear regression

I In linear regression, the errors are

e = y−Xβ = y−Hy = y− ŷ

I Recall the H matrix describes the influence of yi on ŷj ,
i.e. that yi and ŷj covary.

I We show in Worksheet 2.2A that the expected MSE for the
i-th datapoint is:

E(e2
i ) = E

[
(yi − ŷi)T (yi − ŷi)

]
= E

[
(yi − ŷi)2

]
(1)

= Var[yi] + Var[ŷi]− 2Cov[yi, ŷi] + [E(yi)− E(ŷi)]2
(2)

I This is shown by rearranging the formula for Var[yi − ŷi]
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Out-of-sample prediction accuracy in linear regression

I We can write the same thing when predicting an
out-of-sample y′i:

E(e′2i ) = E
[
(y′i − ŷi)T (y′i − ŷi)

]
(3)

= Var[y′i] + Var[ŷi]− 2Cov[y′i, ŷi] + [E(y′i)− E(ŷi)]2
(4)

I But out-of-sample, Cov[y′i, ŷi] = 0 whereas within-sample,
Cov[yi, ŷi] 6= 0.

I Therefore:
E(e′2i ) = E(e2

i ) + 2Cov[yi, ŷi]



10 / 21

Quantifying Out-of-sample prediction accuracy
I Fortunately we already did the work required to describe this:

Cov[yi, ŷi] = σ2Hii

I The mean out-of-sample prediction error is

E(e′2) = n−1
n∑

i=1
e′i

2 = n−1
n∑

i=1
e2

i + 2n−1tr(H)

I We show in Worksheet 2.2A that tr(H) = σ2p where
p=number of predictors.

I The optimism is defined as 2n−1σ2p.
I The optimism grows with σ2 and p but shrinks with n. It is

used to define the model selection criteria ∆Cp which is
minimised:

∆Cp = MSE1 −MSE2 + 2
n
σ̂2(p1 − p2)
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Linear model optimism and AIC

I Minimising Akaike’s Information Criterion:

AIC = −2L(θ̂) + 2Dim(θ)

I reduces to the ∆Cp method when the Likelihood L is a Normal
distribution.
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LOOCV

I We write a statistic ŝ based on all data {y} except i as ŝ(−i)

and the data is {y}(−i).
I For a general loss function we can write:

LOOCV = 1
n

n∑
i=1

Loss
(
yi; θ̂|y(−i)

)
I i.e. we evaluate the loss function for each datapoint using the

estimate from the remaining data.
I NB A loss function is something that we choose the parameters
θ to minimise. It can be:
I the MSE,
I the (negative log) likelihood,
I a penalised version of these,
I or any other convenient quantity.
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LOOCV for linear models

I For the MSE of a linear model we can write:

LOOCV = 1
n

n∑
i=1

(
yi − ŷ(−i)

i

)2

I It is not particularly straightforward1 to show that:

LOOCV = 1
n

n∑
i=1

(
yi − ŷi

1−Hii

)2

I This is a very important quantity, often called the Studentized
residual

I i.e. the LOOCV can be directly computed from a regression
containing all data, by “downweighting” low-leverage data and
upweighting high-leverage (hard to predict) data.

1Our references avoid proving this, but do discuss the motivation. Proofs are
available but beyond scope.

https://en.wikipedia.org/wiki/Studentized_residual
https://en.wikipedia.org/wiki/Studentized_residual
https://stats.stackexchange.com/questions/164223/proof-of-loocv-formula
https://stats.stackexchange.com/questions/164223/proof-of-loocv-formula
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Leave-one-out Cross-Validation

I Leaving out a single datapoint is going to be insufficient unless
the data are independent.

I The real world is rarely completely independent.
I However, there is often a computationally convenient way to

compute LOOCV, and it is still better than leaving nothing out.
It converges to Cp for large n.

I Analogous tricks work for:
I Linear models including Best Linear Unbiased Predictors

(BLUPs)
I Kernel methods
I Nearest neighbour methods
I And others
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Asymptotics

I Here are some facts about the asymptotic behaviour of
LOOCV:
I As n→∞, the expected out-of-sample MSE of the model

picked by LOO cross-validation is close to that of the best
model considered.

I As n→∞, if the true model is among those being compared,
LOOCV tends to pick a strictly larger model than the truth.

I LOOCV is not the right tool for choosing the right model.
I It is however an excellent tool for choosing the model with the

best out-of-sample predictive power.
I . . . when the data to be predicted come from the same

distribution as the data!
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Problems with LOOCV

I We might worry that leaving out one datapoint at a time isn’t
enough:
I Cost. It is straightforward to apply LOOCV to an arbitrary loss

function, including a Likelihood. However, it can be costly.
I Quality. LOOCV estimates of out-of-sample loss has high

variance because each test datapoint using n− 2 of the same
training datapoints. . .

I Empirically, we often choose a different model on different data
generated under the same distribution!

I Correlation. Any correlation breaks LOOCV.
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K-fold CV

I Naive k-fold CV addresses the first issue by creating a
bias-variance tradeoff: we introduce a bias (towards simpler
models) but also significantly reduce the variance of the MSE
estimation.

I More complicated sampling in k-fold settings can also address
correlation.

I Split the data into k “folds” f(i), that is, random
non-overlapping samples of the data of size n/k. Then:

I For each fold i:
I Call X−(f(i)) the “training” dataset and X(f(i)) the “test”

dataset
I Learn parameters θ̂i with data X−(f(i))

I Evaluate li = Loss(X(f(i))|θ̂i)
I And report 1

n

∑k
i=1 li
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How many folds?

I k-fold CV loses a fraction of the data, whereas LOOCV only
loses a constant.

I This means that (under the assumption that the true model
is not in the model space) k-fold CV will choose a simpler
model with less predictive power than was possible.

I However, smaller k can make the inference more consistent
across different data.

I For small data, LOOCV is recommended. For larger data,
k = 10 is often chosen:
I cost. k defines the minimum number of times you need to run

the models. If you can afford to run a model once, you can
probably afford 10 times.

I practicality. If you had only 10% more data you might expect
to get the same performance as LOOCV. We frequently lose
this amount of data to quality control, etc.
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Handling correlation

I Correlation structures can be handled in k-fold CV by careful
sampling:
I a-priori there is a correlation in time or space expected. we can

therefore remove windows.
I the data have some associated covariate, which can be removed

en-masse.
I empirical correlation structures can be used to select a point i

and all points correlated with it above some correlation
threshold.

I Some of these can be used in other contexts. Examples include:
I block bootstrap
I Using a different definition of a “datapoint” in a leave-one-out

context, for example: datapoints are countries instead of
countries at timepoints

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)#Block_bootstrap
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Reflection

I What is model selection, and how is it different to statistical
testing and parameter estimation?

I Be able to perform basic calculations with Leave-one-out cross
validation (CV) and to make judgement calls about the
appropriate use of k-fold CV.
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Signposting

I Cross Validation is extremely poplular because it works. It is
probably the most important component of machine learning.

I Further reading in:
I Chapters 2.3 and 7.10 of The Elements of Statistical Learning:

Data Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

I Cosma Shalizi’s Modern Regression Lectures (Lectures 20, 26)
I Next up: Workshop on Statistical Model Selection
I That is the end of this block.

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/

