
1 / 23

Statistical Testing 2 - Empirical Distributions

Daniel Lawson University of Bristol

Lecture 02.2.2 (v1.0.1)



2 / 23

Resampling

I The main types of resampling tests include:
I jacknifing, which is analysing subsets of data to estimate

(variance of) parameter estimates
I bootstrapping, which is resampling with replacement, to

estimate (variance of) parameter estimates
I permutation, which is resampling without replacement, to test

a null hypothesis
I cross-validation, which is analysing subsets of data to estimate

out-of-sample prediction, for model performance
I Each of these methods can be applied to a wide variety of

problems, and often requires thought to use appropriately.
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Permutations

All permutations of three colors (each column is a permutation):

I Figure from Wikipedia1. There are in general n! permutations.

1https://upload.wikimedia.org/wikipedia/commons/4/4c/Permutations_RGB.svg
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Generating permutations

> set.seed(1)
> n = 5
> x = seq(0,20,length=n)
> x
[1] 0 5 10 15 20
> x[sample.int(n)]
[1] 5 20 15 10 0
> x[sample.int(n)]
[1] 20 15 5 10 0
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Use of permutations in testing

I Consider the following general class of problem:
I H0: y is independent of x.
I H1: y is dependent on x.

I x may be continuous, categorical, etc and y may depend on a
number of other things.

I A permutation test will:
I resample x, y pairs under H0,
I Construct a test statistic T ,
I Test if T extreme in the real data, compared to the

permutations?
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Why permutations

I The main advantage is that the test is asymptotically correct
and distribution free. We only (!) have to assume
exchangability.

I Exchangability of what?
I what would be equal if the null hypothesis is true, and
I would be differerent if the alternative hypothesis is true?

I It is essential to maintain any true correlation structure
when performing the test, otherwise the test is not correct.

I For example, if the indices were originally correlated,
permutation will fail.
I as from e.g. a time-series.
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Some main types of test (1)

x1 x2 x3 y1 y2

4 12 -3 2 -24

I Permutation of indices:

x2 y1 x3 y2 x1

4 12 -3 2 -24

I Permutation of signs, retaining magnitudes:

x1 x2 x3 y1 y2

4 -12 3 -2 24
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Some main types of test (2)

x1 x2 x3 y1 y2

4 12 -3 2 -24

I Permutation of group labels:

x1 y1 y2 x2 x3

4 12 -3 2 -24

I Permutation within group labels:

x1 x2 x3 y1 y2

12 -3 4 -24 2
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Monte-Carlo testing

I There are in general n! permutations. This is typically too
many for n > 20.

I We instead choose N random permutations from all the
possible ones.

I Monte-Carlo testing is an important subject in its own right.
I Its often possible to place guarantees on the p-value from very

few samples.
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Monte-Carlo test

I To conduct a Monte-Carlo test, we construct N random
datasets and add our real dataset.

I We then ask, is the real dataset an outlier with respect to
the random datasets?

I Specifically, the p-value for a test T applied to X (where large
values are considered strange) is:

Rank(T (X); T ({xi}))
N + 1

I where Rank simply counts the number of cases as large or
larger.
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Heuristics for how many permutations to use
I The smallest possible p-value with N permuations is

1/(N + 1). So 999 permutations gives a minimum of 0.001.
I The variance around a chosen threshold, say p = 0.05, is

determined by the sampling distribution of the Binomial:

sd(p) = sd (Bin(N, p)) =

√
p(1− p)

n

I p is of course the true unknown probability, not the observed
one.

I But variance is an increasing function of p (for p < 0.5)
I A heuristic rule is: to be 95% confident that p ≤ t we need the

empirical p-value to be less that t− 1.96sd(p = t)
I For N = 999 and t = 0.05, sd(p = t) = 0.0135 and therefore

p < 0.036
I A similar calculation shows N = 999 wouldn’t be enough to be

sure we were less than 0.005.
I This is conservative. . . only if the distribution is Normal. . . .(!)

Plot the distribution of T !
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Permutation example: TCP vs UDP size

tcpudp=c(tcpsize,udpsize)
n1=length(tcpsize)
n2=length(udpsize)
myteststatistic=function(x,n1,n2){

mean(x[1:n1]) - mean(x[n1+(1:n2)])}

tobs=myteststatistic(tcpudp,n1,n2)
trep=sapply(1:10000,function(i){

xrep=sample(tcpudp)
myteststatistic(xrep,n1,n2)

})
mean(tobs<=trep)
# 0
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Permutation example: TCP vs UDP size
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Permutation example: FTP vs UDP size

I T-test suggests that FTP and UDP are different sizes
muudp=mean(log(udpsize))
t.test(log(ftpsize),mu=muudp)$p.value
## 0.003375621
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Permutation example: FTP vs UDP size

ftpudp=c(ftpsize,udpsize)
n1=length(ftpsize)
n2=length(udpsize)

ftpudpobs=myteststatistic(ftpudp,n1,n2)
ftpudprep=sapply(1:10000,function(i){

xrep=sample(ftpudp)
myteststatistic(xrep,n1,n2)

})
mean(ftpudpobs<=ftpudprep)
## 0.3315
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Permutation example: FTP vs UDP size
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Permutation testing summary

I Distributional assumptions are often invalid (regular tests)
I Exchangability assumptions are often plausible (permutation

tests)
I It is possible to get misleading inference if the assumptions of a

test don’t hold
I Permutation tests are really important for generating plausible

null hypotheses, especially in cyber security
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Reflection

I When are sampling approaches to testing appropriate?
I What do they test?
I What are the main ways to implement them?
I What problems can resampling tests solve? Where are they still

difficult to apply?
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Signposting

I Further reading:
I Cosma Shalizi’s Modern Regression Lectures (Lectures 26,28)
I Cross Validation and Bootstrap Aggregating on Wikipedia
I Chapters 18.7 of The Elements of Statistical Learning: Data

Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

I Chapter 4 of Statistical Data Analysis by Glen Cowan Chapter
18

I Next up: Model selection

http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://www.sherrytowers.com/cowan_statistical_data_analysis.pdf

