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Resampling

» The main types of resampling tests include:

» jacknifing, which is analysing subsets of data to estimate
(variance of) parameter estimates

» bootstrapping, which is resampling with replacement, to
estimate (variance of) parameter estimates

» permutation, which is resampling without replacement, to test
a null hypothesis

» cross-validation, which is analysing subsets of data to estimate
out-of-sample prediction, for model performance

» Each of these methods can be applied to a wide variety of
problems, and often requires thought to use appropriately.



Permutations

All permutations of three colors (each column is a permutation):

999999
999999

999999

> Figure from Wikipedial. There are in general n! permutations.

'https://upload.wikimedia.org/wikipedia/commons/4/4c/Permutations_RGB.svg



Generating permutations

> (1)

>n 5}

> X (0,20,1length=n)
> X

[11 0o 5 10 15 20

> x[ (m)]

[11 5 20 15 10 O

> x[ (m)]

[1] 20 15 5 10 O



Use of permutations in testing

» Consider the following general class of problem:
» HO: y is independent of z.
> H1: y is dependent on z.
» x may be continuous, categorical, etc and y may depend on a
number of other things.
» A permutation test will:
» resample x,y pairs under HO,
» Construct a test statistic T,
» Test if T extreme in the real data, compared to the
permutations?



Why permutations

» The main advantage is that the test is asymptotically correct
and distribution free. We only (!) have to assume
exchangability.

» Exchangability of what?

» what would be equal if the null hypothesis is true, and
» would be differerent if the alternative hypothesis is true?

P It is essential to maintain any true correlation structure
when performing the test, otherwise the test is not correct.

» For example, if the indices were originally correlated,
permutation will fail.

» as from e.g. a time-series.



Some main types of test (1)

x1I x2 x3 yl y2
4 12 -3 2 -24

» Permutation of indices:

x2 yl x3 y2 x1
4 12 -3 2 -24




Some main types of test (1)

x1I x2 x3 yl y2
4 12 -3 2 -24

» Permutation of indices:

x2 yl x3 y2 x1
4 12 -3 2 -24

» Permutation of signs, retaining magnitudes:

xl x2 x3 yl y2
4 -12 3 -2 24




Some main types of test (2)

xl x2 x3

yl

y2

4 12 -3

-24

» Permutation of group labels:

xl yl y2

x2

x3

4 12 -3

2

24




Some main types of test (2)

xl x2 x3 yl y2
4 12 -3 2 -24

» Permutation of group labels:

x1 yl y2 x2 x3
4 12 -3 2 -24

» Permutation within group labels:

xI x2 x3 yl y2
12 -3 4 -24 2




Monte-Carlo testing

» There are in general n! permutations. This is typically too
many for n > 20.

» We instead choose N random permutations from all the
possible ones.

» Monte-Carlo testing is an important subject in its own right.

» Its often possible to place guarantees on the p-value from very
few samples.



Monte-Carlo test

» To conduct a Monte-Carlo test, we construct N random
datasets and add our real dataset.
> We then ask, is the real dataset an outlier with respect to

the random datasets?
» Specifically, the p-value for a test 7" applied to X (where large
values are considered strange) is:

Rank(T(X); T({z:}))
N+1

» where Rank simply counts the number of cases as large or
larger.



Heuristics for how many permutations to use

| 2

| 2

The smallest possible p-value with N permuations is
1/(N +1). So 999 permutations gives a minimum of 0.001.
The variance around a chosen threshold, say p = 0.05, is
determined by the sampling distribution of the Binomial:

p(1—p)

sd(p) = sd (Bin(NN, p)) = -

» pis of course the true unknown probability, not the observed
one.
» But variance is an increasing function of p (for p < 0.5)

A heuristic rule is: to be 95% confident that p < ¢ we need the
empirical p-value to be less that ¢ — 1.96sd(p = ¢)

For N =999 and t = 0.05, sd(p = t) = 0.0135 and therefore
p < 0.036

A similar calculation shows N = 999 wouldn’t be enough to be
sure we were less than 0.005.

This is conservative. .. only if the distribution is Normal. .. .(!)
Plot the distribution of 7'l



Permutation example: TCP vs UDP size

tcpudp (tcpsize,udpsize)

nl (tcpsize)

n2 (udpsize)
myteststatistic-function(x,nl,n2){

(x[1:n1]) (x[n1+(1:n2)1)}



Permutation example: TCP vs UDP size

tcpudp (tcpsize,udpsize)

nl (tcpsize)
n2 (udpsize)
myteststatistic-function(x,nl,n2){
(x[1:n11) (x[n1+(1:n2)1)}
tobs (tcpudp,nl,n2)
trep (1:10000, function(i){
xrep (tcpudp)
(xrep,nl,n2)
1)

(tobs<=trep)
# 0



Permutation example: TCP vs UDP size

Permuting TCP-UDP difference

10000 permutations

Observation

Freguency

T T
-1000000 -500000 0 500000 1000000 1500000

Size Difference




Permutation example: FTP vs UDP size

» T-test suggests that FTP and UDP are different sizes

muudp (  (udpsize))
(  (ftpsize) ,mu=muudp) $p.value



Permutation example: FTP vs UDP size

ftpudp- (ftpsize,udpsize)
nl (ftpsize)
n2 (udpsize)



Permutation example: FTP vs UDP size

ftpudp- (ftpsize,udpsize)
nl (ftpsize)
n2 (udpsize)
ftpudpobs (ftpudp,nl,n2)
ftpudprep (1:10000,function(i){
Xrep (ftpudp)
(xrep,nl,n2)
b
(ftpudpobs<=ftpudprep)



Permutation example: FTP vs UDP size

Permuting FTP-UDP difference

10000 permutations

Observation
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Size Difference




Permutation testing summary

» Distributional assumptions are often invalid (regular tests)

» Exchangability assumptions are often plausible (permutation
tests)

» |t is possible to get misleading inference if the assumptions of a
test don't hold

» Permutation tests are really important for generating plausible
null hypotheses, especially in cyber security



Reflection

» When are sampling approaches to testing appropriate?

» What do they test?

» What are the main ways to implement them?

» What problems can resampling tests solve? Where are they still
difficult to apply?



Signposting

» Further reading:
» Cosma Shalizi's Modern Regression Lectures (Lectures 26,28)
» Cross Validation and Bootstrap Aggregating on Wikipedia
» Chapters 18.7 of The Elements of Statistical Learning: Data

Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

» Chapter 4 of Statistical Data Analysis by Glen Cowan Chapter
18

> Next up: Model selection



http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://www.sherrytowers.com/cowan_statistical_data_analysis.pdf

