Modern Regression

Daniel Lawson University of Bristol

Lecture 02.1.2 (v1.0.2)

Signposting

- \blacktriangleright The previous section 02.1.1 is about interpretation of Regression in general.
- \blacktriangleright This lecture contains the mathematical content for Modern Regression - the vectorised version, which uses Matrix algebra.

Notation, Notation, Notation

- \blacktriangleright There are several choices of convention that we have to make
- \blacktriangleright Vectors of length *k* are also matrices, but are they $k \times 1$ or $1 \times k$?
- \blacktriangleright We use $k \times 1$, i.e. column vectors
- \blacktriangleright Similarly there are choices about matrix derivatives
- \blacktriangleright We use derivative with respect to a column vector as a row vector
- \blacktriangleright Some resources will have everything transposed as a consequence

Linear algebra view of covariance

 \blacktriangleright The **covariance matrix** of a random variable X \blacktriangleright Where X is a vector-valued RV with length k , \blacktriangleright has entries:

$$
Cov(X)_{ij} = Cov(X_i, X_j) = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)].
$$

 \blacktriangleright The matrix form for this is:

$$
\Sigma = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T],
$$

 \blacktriangleright Where $\mu = \mathbb{E}[X]$.

Linear algebra view of correlation

 \blacktriangleright Division by standard deviations is required to correctly generalise the **scalar correlation**:

$$
Corr(X,Y) = \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}.
$$

F The **matrix form** for correlation is:

$$
Corr(X) = (\text{diag}(\Sigma))^{-1/2} \Sigma (\text{diag}(\Sigma))^{-1/2}
$$

 \blacktriangleright The matrix inversion is not computationally challenging because it is for a **diagonal matrix**.

Regression is analogous to linear algebra with noise

▶ Most problems in Linear Algebra can be seen as solving a **system of linear equations:**

$$
XA + b = 0.
$$

 \blacktriangleright Where \overline{X} is an *n* by *p* matrix of data,

- \blacktriangleright A is an *p* by 1 matrix of coefficients,
- \triangleright and $-\overline{b}$ is a *n*-vector of target values.
- \blacktriangleright However, data are not usually generated from a linear model.
- \blacktriangleright We therefore typically seek the least-bad fit that we can:

$$
\text{argmin} ||XA + \mathbf{b}||_2^2 = \sum_{i=1}^N (\mathbf{x}_i A + b_i)^2
$$

- \blacktriangleright i.e. we find A and b such that they minimise the distance (in the squared L_2 norm)
- \blacktriangleright Linear algebra allows this very effectively!
- \blacktriangleright Linear Algebra is therefore a very powerful way to view regression.

Matrix form of least squares

- \blacktriangleright Consider data X' with p' features (columns) and n observations.
- \blacktriangleright Given the regression problem:

$$
\mathbf{y} = X'\beta' + \mathbf{b} + \mathbf{e}
$$

 \blacktriangleright to find:

- \blacktriangleright *β'* (a matrix dimension $p' \times 1$)) \blacktriangleright and *b*,
- ightharpoonup to minimise 'error': in $e^2 = \sum_{i=1}^n \epsilon_i^2$

Matrix form of least squares

 \triangleright We construct a simpler representation by adding a constant feature:

$$
\mathbf{X} = \begin{bmatrix} 1 & \mathbf{X}_{11} & \cdots & \mathbf{X}_{1p'} \\ & & \cdots & \\ 1 & \mathbf{X}_{n1} & \cdots & \mathbf{X}_{np'} \end{bmatrix}
$$

ightharpoonup which has $p = p' + 1$ features.

 \triangleright We now solve the analogous equation:

$$
\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}
$$

 \blacktriangleright which has the same solution but is in a more convenient form.

Mean Squared Error (MSE)

Fig. The **prediction** error is:

$$
\mathbf{e}(\beta) = \mathbf{y} - \mathbf{X}\beta
$$

 \blacktriangleright Using the notation that e is a p by 1 matrix **The estimation error is written in matrix form:**

$$
MSE(\beta) = \frac{1}{n} \mathbf{e}^T \mathbf{e}
$$

$$
\blacktriangleright \text{ Why? } \mathbf{e}^T \mathbf{e} = \sum_{i=1}^n e_i^2
$$

Hence $MSE(\beta)$ is a 1×1 matrix, i.e. a scalar, and $|\text{MSE}(\beta)| = \text{MSE}(\beta).$

 \blacktriangleright Noticing this sort of thing makes the matrix algebra easier.

 \triangleright We want to minimise this MSE with respect to the parameters *β*.

How to do the Matrix Algebra

[Lecture 13 of Cosma Shalizi's notes](http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/13/lecture-13.pdf) is a really helpful reminder!

 \blacktriangleright Look at the [Matrix Algebra Cheat Sheet](https://dsbristol.github.io/dst/coursebook/02-MatrixCheatsheet.html) - specifically:

- \blacktriangleright How does a transpose work?
- ▶ How do you re-order elements?
- \blacktriangleright How does a gradient work in linear and quadratic forms?

Minimising MSE

► Taking (vector) derivatives with respect to *β*:

$$
\nabla \text{MSE}(\beta) = \frac{1}{n} (\nabla \mathbf{y}^T \mathbf{y} - 2 \nabla \beta^T \mathbf{X}^T \mathbf{y} + \nabla \beta^T \mathbf{X}^T \mathbf{X} \beta) \quad (1)
$$

$$
= \frac{1}{n} (0 - 2 \mathbf{X}^T \mathbf{y} + 2 \mathbf{X}^T \mathbf{X} \beta) \quad (2)
$$

I which is zero at the optimum $\hat{\beta}$:

$$
\mathbf{X}^T \mathbf{X} \hat{\beta} - \mathbf{X}^T \mathbf{y} = 0
$$

 \blacktriangleright with the solution:

$$
\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.
$$

 \blacktriangleright Exercise: For the case $p'=1$, check that this solution is the same as you can find in regular linear algebra textbooks.

The Hat Matrix

▶ There is an important and response independent quantity hidden in the prediction:

$$
\mathbf{H} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T
$$

 \blacktriangleright The fitted values are:

$$
\hat{\mathbf{y}} = \mathbf{X}\hat{\beta} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{H}\mathbf{y}
$$

 \blacktriangleright H is dimension $N \times N$ \blacktriangleright H "projects" **y** into the fitted value space \hat{y}

Properties of the Hat Matrix

- **► Influence**: $\frac{\partial \hat{y}_i}{\partial w_i}$ $\frac{\partial y_{i}}{\partial y_{j}}= \mathrm{H}_{ij}.$ So $\mathrm{H}% _{ij}$ controls how much a change in one observation changes the estimates of each other point.
- \blacktriangleright symmetry: $H^T = H$. So influence is symmetric.
- \blacktriangleright **Idempotency**: $H^2 = H$. So the predicted value for any projected point is the predicted value itself.
- \triangleright You should read up on these and other vector algebra properties.

Residuals and the Hat Matrix

 \blacktriangleright The residuals can be written:

$$
\mathbf{e} = \mathbf{y} - H\mathbf{y} = (I - H)\mathbf{y}
$$

 \blacktriangleright I – H is also symmetric and idempotent, and can also be interpreted in terms of Influence.

 \blacktriangleright Because of this,

$$
\text{MSE}(\hat{\beta}) = \frac{1}{n} \mathbf{y}^T (1 - \mathbf{H})^T (1 - \mathbf{H}) \mathbf{y} = \frac{1}{n} \mathbf{y}^T (1 - \mathbf{H}) \mathbf{y}
$$

Expectations

If the data were generated by our model(!) then they are described by an RV **Y** (an *n*-vector):

$$
\mathbf{Y}_i = \mathbf{x}_i \beta + \epsilon_i
$$

 \blacktriangleright \mathbf{x}_i is still a vector but *not* a Random Variable!

- \blacktriangleright ϵ is an $n \times 1$ matrix of RVs with mean $\bm{0}$ and covariance $\sigma_s^2 \bm{I}$.
- ▶ From this it is straightforward to show that the fitted values **are unbiased**:

$$
\mathbb{E}[\hat{\mathbf{y}}] = \mathbb{E}[H\mathbf{Y}] = \mathbf{x}\beta
$$

using the properties of Expectations with the symmetry and idempotency of H.

Covariance

\triangleright Similarly, it is straightforward to show that

$$
\text{Var}[\hat{\mathbf{y}}] = \sigma_s^2 \mathbf{H}
$$

using the properties of Variances with the symmetry and idempotency of H.

 \blacktriangleright In other words, the covariance of the fitted values is determined entirely by the structure of the covariates, via the Hat matrix.

Implications

- \blacktriangleright Matrix form is a massive simplification of complex algebra
- \blacktriangleright It is easy to check that e.g. dimensions make sense
- \blacktriangleright These vector calculations are repeated in many machine-learning methods
- \blacktriangleright The details change but the principle remains
- \blacktriangleright Linear-Algebra loss minimisation techniques are extremely important
- \blacktriangleright They often sit inside a wider argument, e.g. updated conditional on some other parameters

Reflection

▶ Be able to define **correlation** and regression in multivariate context

 \blacktriangleright Be able to perform basic calculations using these concepts

- \blacktriangleright Be able to extend intuition about their application.
- \blacktriangleright Be able to follow the reasoning in a paper where things get complicated.

 \blacktriangleright Matrix algebra is worth reading up on!

▶ Describe it for example in your assessments' reflection.

Signposting

- ▶ Make sure to look at 02.1-Regression.R
- \blacktriangleright The mathematics behind Modern Regression is analogous to the mathematics underpinning scalable Machine Learning. **It is very important**.
- ▶ For accessible material see [Cosma Shalizi's Modern Regression](http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/) [Lectures](http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/) (Lectures 13-14)
- \blacktriangleright Further reading in chapters 2.3 and 3.2 of [The Elements of](https://web.stanford.edu/~hastie/Papers/ESLII.pdf) [Statistical Learning: Data Mining, Inference, and Prediction](https://web.stanford.edu/~hastie/Papers/ESLII.pdf) (Friedman, Hastie and Tibshirani)
- \blacktriangleright Next up: 2.2 Statistical Testing