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Signposting

I The previous section 02.1.1 is about interpretation of
Regression in general.

I This lecture contains the mathematical content for Modern
Regression - the vectorised version, which uses Matrix algebra.



Notation, Notation, Notation

I There are several choices of convention that we have to make
I Vectors of length k are also matrices, but are they k × 1 or

1× k?
I We use k × 1, i.e. column vectors
I Similarly there are choices about matrix derivatives
I We use derivative with respect to a column vector as a row

vector
I Some resources will have everything transposed as a

consequence



Linear algebra view of covariance

I The covariance matrix of a random variable X
I Where X is a vector-valued RV with length k,
I has entries:

Cov(X)ij = Cov(Xi,Xj) = E[(Xi − µi)(Xj − µj)].

I The matrix form for this is:

Σ = E[(X− E[X])(X− E[X])T ],

I Where µ = E[X].



Linear algebra view of correlation

I Division by standard deviations is required to correctly
generalise the scalar correlation:

Corr(X,Y ) = E[(X − µX)(Y − µY )]
σXσY

.

I The matrix form for correlation is:

Corr(X) = (diag(Σ))−1/2 Σ (diag(Σ))−1/2

I The matrix inversion is not computationally challenging
because it is for a diagonal matrix.



Regression is analogous to linear algebra with noise
I Most problems in Linear Algebra can be seen as solving a

system of linear equations:

XA + b = 0.

I Where X is an n by p matrix of data,
I A is an p by 1 matrix of coefficients,
I and −b is a n-vector of target values.

I However, data are not usually generated from a linear model.
I We therefore typically seek the least-bad fit that we can:

argmin||XA + b||22 =
N∑

i=1
(xiA + bi)2

I i.e. we find A and b such that they minimise the distance (in
the squared L2 norm)

I Linear algebra allows this very effectively!
I Linear Algebra is therefore a very powerful way to view

regression.



Matrix form of least squares

I Consider data X′ with p′ features (columns) and n
observations.

I Given the regression problem:

y = X′β′ + b + e

I to find:
I β′ (a matrix dimension p′ × 1))
I and b,
I to minimise ‘error’: in e2 =

∑n
i=1 ε

2
i



Matrix form of least squares

I We construct a simpler representation by adding a constant
feature:

X =

1 X11 · · · X1p′

· · ·
1 Xn1 · · · Xnp′


I which has p = p′ + 1 features.

I We now solve the analogous equation:

y = Xβ + e

I which has the same solution but is in a more convenient form.



Mean Squared Error (MSE)

I The prediction error is:

e(β) = y−Xβ

I Using the notation that e is a p by 1 matrix
I The estimation error is written in matrix form:

MSE(β) = 1
n

eT e

I Why? eT e =
∑n

i=1 e
2
i

I Hence MSE(β) is a 1× 1 matrix, i.e. a scalar, and
|MSE(β)| = MSE(β).

I Noticing this sort of thing makes the matrix algebra easier.
I We want to minimise this MSE with respect to the parameters
β.



How to do the Matrix Algebra

Lecture 13 of Cosma Shalizi’s notes is a really helpful reminder!
I Look at the Matrix Algebra Cheat Sheet - specifically:

I How does a transpose work?
I How do you re-order elements?
I How does a gradient work in linear and quadratic forms?

http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/13/lecture-13.pdf
https://dsbristol.github.io/dst/coursebook/02-MatrixCheatsheet.html


Minimising MSE

I Taking (vector) derivatives with respect to β:

∇MSE(β) = 1
n

(∇yT y− 2∇βT XT y +∇βT XT Xβ) (1)

= 1
n

(0− 2XT y + 2XT Xβ) (2)

I which is zero at the optimum β̂:

XT Xβ̂ −XT y = 0

I with the solution:

β̂ = (XT X)−1XT y.

I Exercise: For the case p′ = 1, check that this solution is the
same as you can find in regular linear algebra textbooks.



The Hat Matrix

I There is an important and response independent quantity
hidden in the prediction:

H = X(XT X)−1XT

I The fitted values are:

ŷ = Xβ̂ = X(XT X)−1XT y = Hy

I H is dimension N ×N
I H “projects” y into the fitted value space ŷ



Properties of the Hat Matrix

I Influence: ∂ŷi
∂yj

= Hij . So H controls how much a change in
one observation changes the estimates of each other point.

I symmetry: HT = H. So influence is symmetric.
I Idempotency: H2 = H. So the predicted value for any

projected point is the predicted value itself.
I You should read up on these and other vector algebra

properties.



Residuals and the Hat Matrix

I The residuals can be written:

e = y−Hy = (I−H)y

I I−H is also symmetric and idempotent, and can also be
interpreted in terms of Influence.

I Because of this,

MSE(β̂) = 1
n

yT (1−H)T (1−H)y = 1
n

yT (1−H)y



Expectations

I If the data were generated by our model(!) then they are
described by an RV Y (an n-vector):

Yi = xiβ + εi

I xi is still a vector but not a Random Variable!
I ε is an n× 1 matrix of RVs with mean 0 and covariance σ2

s I.
I From this it is straightforward to show that the fitted values

are unbiased:
E[ŷ] = E[HY] = xβ

I using the properties of Expectations with the symmetry and
idempotency of H.



Covariance

I Similarly, it is straightforward to show that

Var[ŷ] = σ2
sH

using the properties of Variances with the symmetry and
idempotency of H.

I In other words, the covariance of the fitted values is determined
entirely by the structure of the covariates, via the Hat matrix.



Implications

I Matrix form is a massive simplification of complex algebra
I It is easy to check that e.g. dimensions make sense
I These vector calculations are repeated in many

machine-learning methods
I The details change but the principle remains
I Linear-Algebra loss minimisation techniques are extremely

important
I They often sit inside a wider argument, e.g. updated

conditional on some other parameters



Reflection

I By the end of the course, you should:
I Be able to define correlation and regression in multivariate

context
I Be able to perform basic calculations using these concepts
I Be able to extend intuition about their application.
I Be able to follow the reasoning in a paper where things get

complicated.
I Matrix algebra is worth reading up on!

I Describe it for example in your assessments’ reflection.



Signposting

I Make sure to look at 02.1-Regression.R
I The mathematics behind Modern Regression is analogous to

the mathematics underpinning scalable Machine Learning. It is
very important.

I For accessible material see Cosma Shalizi’s Modern Regression
Lectures (Lectures 13-14)

I Further reading in chapters 2.3 and 3.2 of The Elements of
Statistical Learning: Data Mining, Inference, and Prediction
(Friedman, Hastie and Tibshirani)

I Next up: 2.2 Statistical Testing

http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/
http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf

