Vectorisation, Mapping and Reducing

Daniel Lawson - University of Bristol

Lecture 10.2 (v2.0.0)

How to write your lines faster

Vectorisation

- Vectorised code is parallelised code.
- Each operation for vectorised code is computable independently
- The same operation is applied to each element (with different data)
- CPU optimisation is possible and may be straightforward
- GPU acceleration is possible
- Vectorisations are always one dimensional representations
\rightarrow A set of standardized elementwise computations is possible:
- addition, subtraction, multiplication, division
> other operations are possible, this becomes architecture dependent

Vectorisation of K-dimensional objects

- Matrices can be represented by standardized vectorisation procedures
$\Rightarrow A=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]$
- Row major order: $\operatorname{vec}(A)=(a, b, c, d, e, f)$
- Column major order: $\operatorname{vec}(A)=(a, d, b, e, c, f)$
- Matrix multiplication:
- Is just sums of the correct components of the vectorised matrices
- Choice of row vs column major order affects efficiency!
- Parallelization:
- On a shared memory machine, the computations are distributed
- Otherwise a memory distribution problem
- Efficient implementations for many common computations

Vectorisation and time complexity

- Assuming no parallelization:
- A for loop with N iterations is $O(N)$
- A vectorisation with N elements is $O(N)$
- But the vectorised code may still be orders of magnitude faster:
- It often can be pushed into low-level code (C backend)
- It can exploit CPU memory architecture: caching the correct content to avoid overhead
- It can exploit CPU compute architecture: multiple registers in parallel
- Vectorisation also leads directly into parallel implementations:
- It emphasises dependencies,
- It encourages reordering of loops which can reduce time complexity.

Distributed computation

- On a shared memory system, parallel computation is trivial:

1. Initialise a parallelisable step, i.e.

- enumerate the computations to be performed.

2. Assign them to worker threads:

- either evenly if compute resource is guaranteed and tasks take equal time, e.g. on a GPU,
$>$ or as a queue.

3. Action the computation,
4. Block, i.e. wait for all computations to complete.

- On completion, the results are in the same place in memory as if the computation was performed in series.

Accumulate/Reduce

- Suppose that you wanted to compute the cumulative sum. Then the elements become dependent and you cannot use a purely independent vectorization.
- How can we combine results from N parallel computations?
\downarrow accumulate is a vectorisation of any (binary, i.e. pairwise) (associative and commutative) function returning a single value
- It may or may not provide access to intermediate function evaluations
- It is often called a Reduce operation
- It is a natively parallelisable way to view combining

Accumulate/Reduce computation graph

- Computational graph properties:
- Nodes n internal to binary tree: $n(d)=\sum_{i=0}^{d} 2^{i}=2^{d+1}-1$
- Depth $d: d(n)=\Theta(\log (n))$
\downarrow Algorithm properties:
- Maximum compute could use $2^{d-1}=2^{\log _{2}(n)}=n / 2$ cores,
- Parallel maximum speedup: $\Theta(\log (n))$ due to depth,
- Simple blocking queue would reserve $n \log (n) / 2$ processes,
- Parallel efficiency cost: $E=\Theta(n /(n \log (n)))$ if all memory operations are in place.

Map/Reduce parallel framework

- For general purpose computation, the concepts of mapping and reducing enable efficient parallel code.
- This uses the concept of a key-value tuple.
- The data are mapped: each value is assigned one or more keys
- Data associated with each key is passed to a reducer
- The reducer completes the computation
- More precisely,
- Map: $M\left(k_{0}, v_{0}\right) \rightarrow\left(\left(k_{1}, v_{1}\right), \cdots,\left(k_{K}, v_{K}\right)\right)$ is a function taking an input key/value pair to a list of output key/value pairs
- Reduce: $R\left(k,\left(v_{1}, \cdots, v_{R}\right)\right) \rightarrow(k, v)$ is a function taking an input key and list of values, to a single (list-valued) value.

Map/Reduce vector averaging example

- Let X be a vector of length N.
- Map: $\left(k_{0}, v\right) \rightarrow(k,\{w=1, v=v\})$
- Assign each element a key $k \in[1, \cdots, K]$,
- Assign a weight in the value,
- The key acts as a fold of data.
- Here, we are using the key as an arbitrary index, but this can be exploited.
$>$ Reduce: $(k,\{v\}) \rightarrow(k, v)$
- Count within each fold:
- Return $(k, v)=\left(k,\left\{w=\sum_{k=1}^{K} v_{w}, v=\sum_{k=1}^{K} v_{v}\right\}\right)$
- Postprocess: Return mean $=\frac{\sum_{k=1}^{K} v_{k, v}}{\sum_{k=1}^{K} v_{k, w}}$

Map/Reduce analysis

- Assume within-memory implementation
- Use $p \leq K$ parallel threads (assume an integer multiple for simplicity...)
- The map stage is entirely parallel for cost $\Theta(\lceil n / p\rceil)$
- There is a sort stage which would be handled by a set of K lists
- Independently parallelised construction of the K lists for cost $\Theta(\lceil n / p\rceil)$
- In memory concatenation cost is negligible
- The reduce stage is parallel across $\Theta(\lceil K\lceil n / K\rceil / p\rceil) \approx \Theta(\lceil n / p\rceil)$ processes
- The postprocess stage is naively sequential with compute cost K
- Total parallel time: $T_{p}=\Theta(\lceil n / p\rceil+\lceil n / p\rceil+\lceil n / p\rceil+K)$
- Total sequential time: $T_{s}=\Theta(n)$
- Total efficiency loss: $T_{p} / T_{s} \sim \Theta(1+K p)$

Map/Reduce reducer parallelisation

- Practical concerns:
- Reducers don't automatically provide parallelism: we have to ask for it
This is because the reducer is not assumed to be commutative
- But if the keys explicitly specify the desired folds, the reduce can be parallelised
- In Hadoop/Spark Map/Reduce, reduction is parallelised across keys
- In python/local Map/Reduce, reduction parallelisation is manual
- We can also map the postprocess k-fold reduction sum. Using p_{2} processes:
- Reduce the postprocess time from K to

$$
T_{p}^{\prime}=\Theta\left(\left\lceil K / p_{2}\right\rceil+\left\lceil K / p_{2}\right\rceil+p_{2}\right)
$$

\checkmark Minimized at $p_{2}=\sqrt{K}$

- So we should use $K=p^{2}$ keys, keeping $p_{2}=p$.
- Total parallel time: $T_{p}=\Theta(\lceil n / p\rceil+\lceil n / p\rceil+\lceil n / p\rceil+\sqrt{p})$

Map/Reduce Matrix Example

Elements required to compute (M,i,j)

Elements for which (M,i,j) is required

Map/Reduce Matrix Example

$$
C=\left[\begin{array}{cc}
k & l \\
m & n
\end{array}\right]=A B=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]\left[\begin{array}{ll}
u & v \\
w & x \\
y & z
\end{array}\right]
$$

- C has dimension $L \times L, \mathrm{~A}$ has dimension $L \times K$
- where $k=a u+b w+c y$, etc
- For a one-stage implementation, each of the four computations requires access to three elements from each array
- Represent the matrices in index form: (key, value) where key $=(M, i, j)$ is the position (row and column) index and records the matrix type $M \in[A, B, C]$.
- Computing (C, i, j) requires all elements of A from row i and all elements of B from row j
- There will be $K=3$ such elements
- Required to compute L^{2} entries of C

Map/Reduce Matrix Multiplication Algorithm

- Map: each element is mapped independently to a list of K elements:
- $\operatorname{Map}((M, i, j), v)$:
> $((A, i, j), v) \rightarrow((i, k),(A, j, v)) \quad \forall k=1, \ldots, K$
$\downarrow((B, i, j), v) \rightarrow((k, j),(B, i, v)) \quad \forall k=1, \ldots, K$
- Cost: $2 K$ for each of L^{2} independent entries
- Reduce: each key (i, j) is received $2 K$ times, K from A and K from B.
- Reduce $((i, j),(M, k, v))$:
> $v_{i, j}=\sum_{k=1}^{K} v_{(A, k, v)} v_{(B, k, v)}$
- Return $\left((i, j), v_{i, j}\right)$
- Cost: K for each of L^{2} independent entries
- Cost:
- Parallel time $T_{p}=\Theta\left(\left\lceil L^{2} / p\right\rceil K\right)$
- Sequential time $T_{s}=\Theta\left(L^{2} K\right)$
- Efficiency 1
- Despite inefficient duplication of data, which fast algorithms avoid!

Map/Reduce paradigm

- Map/Reduce is an essential tool in low-effort parallelism.
- The main computational advantage is that it is scalable: it can be parallelised across machines.
- So far we've described Map/Reduce as an in memory algorithm.
- In this case it naturally leads to fast analogues for a single computer:
- We can imagine each reducer key being a memory location and the mappers are providing data fed to that location;
- This is essentially how vectorised matrix computations are implemented efficiently.

Summary

- Vectorised code is efficiently computed
- Vectorised code is parallelisable with little effort
- Embarrassingly parallel algorithms are common
- Map/Reduce is a powerful paradigm for non-trivial parallelism and is the heart of massively parallel data processing
- Map/Reduce comes at an efficiency cost

References

- Chapter 27 of Cormen et al 2010 Introduction to Algorithms covers some of these concepts.
- Numpy vectorisation
- MapReduce algorithm for matrix multiplication
- Chrys Woods Parallel Python
- See the non-taught Block 12 content on Spark and HDFS if you want to learn about how this works on Distributed data.

