
Introduction to Parallelism

Daniel Lawson — University of Bristol

Lecture 10.1 (v2.0.0)



Working in Parallel



Questions

I When can an algorithm be run in parallel, i.e. concurrently?
I Which parts of an algorithm can be sped up?
I What scale of parallelism are possible?

I . . . within a processor?
I . . . across components on a single computer?
I . . . across machines within an institution?
I . . . distributed across time and space?



CPUs are parallel processing units

I Each CPU (central processing unit) is a sophisticated
architecture.

I Parallelism exists in:
I how the CPU accesses memory,
I how memory is structured (L1 cache, general memory),
I how the CPU processes registers. . .

I You only need to write vectorized code in order to access this.



Computers are parallel processing units

I General purpose parallelism can be:
I A single machine containing a multi-core CPU (central

processing unit):
I Most commonly coded with OpenMP,
I The cores share memory and are multipurpose, and hence

coding is easy,
I Accessed via simple libraries.

I A GPU (graphical processing unit):
I Most commonly coded with OpenCL or libraries that enable this,
I Contain a large number of relatively limited cores that can

perform simple computations (e.g. matrix operations; linear
computations) efficiently,

I Dedicated scientific GPU hardware is increasingly multipurpose,
i.e. has an increased feature set.



Clusters of computers are parallel processing units

I Multiple machines act as a processing unit, either:
I A set of (identical) machines on a high-bandwidth network

connection, able to perform computation as a coherent unit.
I Extremely flexible and the most popular setup; a

“supercomputer”.
I Coded with Hadoop, Spark, OpenMPI, etc depending on goal.

I Massively distributed computing, able to communicate but
not rely on one another.
I Non-realtime computations can be distributed and returned

when ready.
I For example, SETI@Home; Folding@Home, internet routing;

low priority access to Amazon AWS/Azure.
I Biological decision making (the brain),
I Societal decision making (social insects, humans).



Formal classes of parallel computer
I Computer scientists may think in terms of control (instruction

sets) and processing (data streams):
I Single Instruction stream, Single Data stream (SISD):

I Single control, single processor. A sequential processor, as we
conceptualise a computer.

I Single Instruction stream, Multiple Data stream (SIMD):
I Single control, multiple processors. dedicated to vector

calculations.
I Multiple Instruction stream, Single Data stream (MISD):

I Used for streaming computations (e.g. splitting pipes) for fast
response, e.g. the space shuttle. . .

I Multiple Instruction stream, Multiple Data stream (MIMD):
I Multiple control, multiple processors.

I They also think in terms of shared vs distributed
(interconnected) memory.
I e.g. MIMD may have distributed memory.



Parallel algorithms for data science

I Most parallel coding is about thinking about your problem:
I What dependencies (on the output of some other

computation) really exist?
I How can you write code avoiding unnecessary dependencies?

I There are hardcore parallel algorithms and paradigms. We just
need to know:
I Should we try to parallelise to solve a particular problem?
I Will simple tricks work for you?

I This involves describing your problem in a well-supported
paradigm



Computation Graph
I How is the computation

structured?
I Which parts are

parallisable?
I Where is the output of one

computation required?
I In this illustration,

I Gather Input
I Do something in parallel
I Collect the answer
I Do something else in

parallel
I Collect the answer
I Return

I There are always sequential
limits in e.g. memory
allocation, variable
construction, etc.



Computation dependence
I Real example:

Dimensionality reduced
similarity

procedure Example(x[], n, m)
while i ≤ n do

y[i]← f(x[i]; m)
end while
while i ≤ n, j ≤ n do

z[i, j]← g(y[i], y[j]; k)
end while
return z

end procedure

I Consider a matrix x of
dimension n items with m
features and p CPUs.
I First: compute

yi = f(xi), a vector of
length k � m

I Second: compute a
similarity

zij = g(yi, yj) ≈ g′(xi, xj)

I Raw cost:

Θ(nm + n2k)

I Parallel cost:

Θ(dn/pem + dn2/pek)



Parallel speedup

I There are two key concepts:
I Total Speedup St := Sequential algorithm runtime

Parallel algorithm runtime = Ts/Tp.
I The speed benefit of running compute in parallel
I St = t/p in the best case (for total time t and p processors)

I Work efficiency E := Total Sequential compute
Total Parallel compute .

I The efficiency penalty for running in parallel
I E = 1 in the best case.

I For example:
I If the runtime t decreased as t = Θ(log(n)/p),
I and we used p =

√
n processors,

I then the speedup is
√

n/ log(n) whilst the efficiency is
1/ log(n).

I These can be defined both for actual times, and rates.



Maximum speedup

I Amdahl’s Law: Max speedup = 1
(1−P )+P/Sp

I where P is the parallelisable proportion of the algorithm
I and Sp is the Speedup for the parallelisable proportion
I This follows directly from writing the compute time of the

parallel algorithm:

Tt = (1− P )Ts + PTs/Sp

I it asymptotes to 1/(1− P )
I It doesn’t matter how much compute resource you throw

at a problem, you can’t reduce it further than this!



Embarrassingly parallel algorithms

I The meaning of the word is as in:

"an embarrassment of riches..."

I embarrassingly parallel algorithms are the most important
class.
I In these, there is no dependency between threads.
I You can run them in an arbitrary order, in series if needed.

I Most parallel coding is about turning a problem into a series of
embarrassingly parallel algorithms.



Embarrassingly parallel examples

I Monte-Carlo sampling (for integration or search):
I Run a large number of independent, randomised processes.

I Grid search or Latin hypercube sampling:
I Run a large and (pre-defined or algorithmically defined) set of

independent processes.
I Independent database queries (assuming database storage is

distributed with compute)
I Rendering of graphics in games/video editing
I Note:

I Still not trivial be to implement if memory or communication
bandwidth becomes limiting.



References

I A Brief Overview of Parallel Algorithms
I Parallel computing concepts e.g. Amdahl’s Law for the overall

speedup
I MISD/MIMD/SIMD/SISD
I Parallel time complexity

http://www.cs.cmu.edu/~scandal/html-papers/short/short.html
https://csinparallel.org/csinparallel/modules/intro_parallel.html
https://www.tutorialspoint.com/parallel_algorithm/parallel_algorithm_introduction.htm
https://www.tutorialspoint.com/parallel_algorithm/parallel_algorithm_analysis.htm

