
Algorithms for Data Science

Daniel Lawson — University of Bristol

Lecture 09.2 (v2.0.0)



Psst! Want some Big Data?



Questions

I Can we quickly tell if we’ve seen data before?
I How quickly can we access it?
I How can we randomly sample from a near-infinite data stream?
I Can we count things without storing them all?



Hash functions

I One of the most important components in good algorithmic
design is the hash.

I Simply, a hash h is a map for h(x) = u with:

x ∈ X → u ∈ U [0, r).

I i.e., we map each item in the space X into the Uniform
distribution on the integers 0, . . . , r − 1.

I Each item will always map to the same integer.



Hash examples

I Some simple methods for creating keys from integers.
I Open DSA - Data Structures and Algorithms is a great

reference.
I Modulo r

x % 16 # modulo 16

I Binning (floor function or integer division)
x // 32 # need to know max(N) for r

I Mid-Square method: square the value, use the middle digits in
the hash

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/HashFuncExamp.html


Hash examples

I Some simple methods for creating keys from integers.
I Open DSA - Data Structures and Algorithms is a great

reference.
I Modulo r

x % 16 # modulo 16

I Binning (floor function or integer division)
x // 32 # need to know max(N) for r

I Mid-Square method: square the value, use the middle digits in
the hash

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/HashFuncExamp.html


Hash examples

I Some simple methods for creating keys from integers.
I Open DSA - Data Structures and Algorithms is a great

reference.
I Modulo r

x % 16 # modulo 16

I Binning (floor function or integer division)
x // 32 # need to know max(N) for r

I Mid-Square method: square the value, use the middle digits in
the hash

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/HashFuncExamp.html


Hash considerations

I There are many choices for a hash function in practice.
Considerations include:

I Randomness. For many applications (e.g. cryptography) we
want no correlation between x and u.

I Locality. For other applications (e.g. locality sensitive hashing)
we want similar x to produce similar u.

I Collisions. We may wish to reduce collisions on a subset of
the potential input space. For example, if x ∈ [0, r) and
u ∈ [0, r) it is possible to eliminate collisions.

I Compute. Hash functions vary in their compute cost.
I Families. It is often useful to be able to index a family of hash

functions with the same computational cost that return
different values.



Data Structures

I Data structures are representations of a set of data
I This representation is particularly important when sets are

dynamic, i.e. grow or shrink
I We will perform operations on the set, which will have an

associated computation cost
I The data structure has an associated space cost
I Making the right choice of data structure is an essential

component of data science



Fixed size elementary data structures

I We are familiar with the concepts of:
I Arrays: A segment of memory containing n data of the same

type
I Vectors: Arrays with additional operations defined
I Multi-dimensional arrays: Arrays of length

n = n0 × n1 × · · · × nk, with entries specified according to a
protocol (e.g. row-wise)

I Matrices/Tensors: Multidimensional arrays with additional
operations defined

I It is clear that arrays are a fundamental concept!



Elementary data structures: Stacks and Queues

5 1 5 12 3 1 7 12

read writewriteread read

I Stacks: Data are stored in an array using “first in, last out”:
insertions and deletions occur at the same end
I Implemented as a pointer to the last read location

I Queues: Data are stored in an array using “first in, first out”:
insertions occur one end, deletions the other
I Implemented as a pointer to the end (for writing) and start (for

reading) that tracks removed items

I Despite implementation similarities, both have different Data
Science properties!



Elementary data structures: Stacks and Queues

5 1 5 12 3 1 7 12

read write

writeread read

I Stacks: Data are stored in an array using “first in, last out”:
insertions and deletions occur at the same end
I Implemented as a pointer to the last read location

I Queues: Data are stored in an array using “first in, first out”:
insertions occur one end, deletions the other
I Implemented as a pointer to the end (for writing) and start (for

reading) that tracks removed items

I Despite implementation similarities, both have different Data
Science properties!



Elementary data structures: Stacks and Queues

5 1 5 12 3 1 7 12

read writewriteread read

I Stacks: Data are stored in an array using “first in, last out”:
insertions and deletions occur at the same end
I Implemented as a pointer to the last read location

I Queues: Data are stored in an array using “first in, first out”:
insertions occur one end, deletions the other
I Implemented as a pointer to the end (for writing) and start (for

reading) that tracks removed items

I Despite implementation similarities, both have different Data
Science properties!



Elementary data structures: Stacks and Queues

5 1 5 12 3 1 7 12

read write

writeread

read

I Stacks: Data are stored in an array using “first in, last out”:
insertions and deletions occur at the same end
I Implemented as a pointer to the last read location

I Queues: Data are stored in an array using “first in, first out”:
insertions occur one end, deletions the other
I Implemented as a pointer to the end (for writing) and start (for

reading) that tracks removed items

I Despite implementation similarities, both have different Data
Science properties!



Elementary data structures: Stacks and Queues

5 1 5 12 3 1 7 12

read write

write

read

read

I Stacks: Data are stored in an array using “first in, last out”:
insertions and deletions occur at the same end
I Implemented as a pointer to the last read location

I Queues: Data are stored in an array using “first in, first out”:
insertions occur one end, deletions the other
I Implemented as a pointer to the end (for writing) and start (for

reading) that tracks removed items

I Despite implementation similarities, both have different Data
Science properties!



Elementary data structures: Stacks and Queues

5 1 5 12 3 1 7 12

read writewriteread read

I Stacks: Data are stored in an array using “first in, last out”:
insertions and deletions occur at the same end
I Implemented as a pointer to the last read location

I Queues: Data are stored in an array using “first in, first out”:
insertions occur one end, deletions the other
I Implemented as a pointer to the end (for writing) and start (for

reading) that tracks removed items

I Despite implementation similarities, both have different Data
Science properties!



Elementary data structures: Linked List

5 1 5

I Linked list: Data are stored in a list, with a pointer to the
location of the next item
I Fast traversion, insertion and deletion
I Slow random access
I Can be doubly linked



Elementary data structures: Binary Trees & Heaps

5 1 5 12 3 1 7 12
5

1
1 5

3

12
7 12

I Binary Trees: Data are stored in a binary linked list, i.e. each
node has (up to) two children
I Data can be stored at nodes or leaves
I Critical to define the left/right operation!

I Position is decided by a key, which can be related to the value
I In the picture, values ≤ x go left, > x go right
I Some binary tree structures assign values to internal nodes,

e.g. means/ranges
I Heaps: A binary tree where each node’s key is (larger) than

it’s children



Elementary data structures: Hash Tables

I Hash Tables: Data location determined by the key
I The key is a hash x = hl: either of an attribute (e.g. a name),

or of the value
I Advantage is O(1) lookup cost. Usage is:

1. Compute u = h2(x)
2. Set u′ = u%r
3. To insert: store y at this position. On collision, we use some

rule to find an empty space, such as rehashing, or storing a
linked list.

4. To lookup: retrive this value (using the same rule about
collisions).



Sampling (for big data)

I If there are N (large) items, how do we correctly sample n of
them?

I Naive approach: read in the data, choose n at random, done.
I What if the data don’t fit in memory? We might choose a

subset e.g. by:
I Random sampling: Choose each point with probability

p = n/N
I Uniform sampling: Choose every n/N th point
I Efficiently?



Sampling (when we don’t know N)

I Reservoir sampling:
I Keep the first n items. For the remaning items i:
I Accept the new item with probability n/i

I discard uniformly from the n.
I Otherwise, keep the old items.

I Weighted versions etc exist.
I Generates samples uniformly from the whole set of n with fixed

storage.



Non-Uniform sampling

I Sometimes, most data is “boring”. We want to sample the
“most useful” data.

I One solution is to divide the data into histogram bins and
sample inversely with frequency using e.g. reservoir sampling
within each

I How to choose the bins?
I Choice in advance requires knowledge of the data, or looking at

it already
I Dynamic approaches are possible where the bins are learned in a

streaming manner1
I The algorithm can be tuned for estimating particular quantities,

e.g. the mean2

1Streaming histogram implementation
2Risto Tuomainen Data Sampling for Big Data

https://github.com/VividCortex/gohistogram
https://www.cs.helsinki.fi/u/jilu/paper/tuomainen.pdf


Filtering

I Filters have the goal of retaining information regarding which
data have previously been seen, without storing it all.

I Example: we have a datastream of (many) observed MAC
addresses from users.
I Question: have we seen value x before?
I Can we do this with constant cost Θ(1) per item?



Bloom Filter

I A bloom filter can tell in constant time whether:
1. a data point is not in the database
2. a data point might be in the database

I It does this by storing all of the observed data solely as a hash
h(x)→ (0, r].
I The data are stored as a bitvector br.
I The larger the range, the more precise the answer will be but

the greater the cost.
I For each datapoint xi we:
1. Compute k hashes in [0, r), hk(xi)
2. Set all bits hashed into to one, i.e. br(hk(xi)) = 1
I At lookup time: if any br(hk(xi)) = 0 then we have not seen

this item before.
I See Bill Mill’s excellent Bloom filter practical

https://llimllib.github.io/bloomfilter-tutorial/


Bloom Filter Example



Choosing parameters for a bloom filter

I There are three variables: the number of data expected to
be stored, n, the number of hashes k and the length of the
bitvector r.

I The error rate is expected to be (1− exp(−kn/r))k

I It turns out that this is minimised when k = r/n ln(2)
I You then trade of error rate for storage size (for the bit vector)

and compute cost (for the hashes)
I Bloom Filters are very useful, for example in Network analysis3

3Broder & Mitzenmacher “Network Applications of Bloom Filters: A Survey”
(2003) Internet Mathematics 1:485-509



Sketching

I Sketching is obtaining the frequency properties of your data
from a data stream.

I One important class is probabilistic counting, which addresses
how many of each class there are.



Count-min-sketch

I Count-min-sketch works just like a bloom filter, except that we
store an integer for each has rather than a single bit.

I We initialise br = 0, and then:
1. Compute k hashes in (0, r], hk(xi)
2. Add one to all bits hashed into, i.e. br(hk(xi))+ = 1

I At lookup time, the number of items is estimated to be

argminhk(xi)br(hk(xi))

i.e. the minimum count.
I See e.g. Python implementation of Count Min Sketch by Rafael

Carrascosa (part of PyPI)

https://github.com/rafacarrascosa/countminsketch


Sketching Example



Other important algorithms:

I The MinHash algorithm quickly computes similarities between
sparse feature vectors such as documents.

I Locality Sensitive Hashing reduces the dimensionality of
data by representing an object as a set of hashes, chosen so
that “similar” items have “similar” hash values

I The Hashing Trick is a Machine-Learning tool for turning
arbitrary objects into features - just take one or more locality
sensitive hashes of the object as new features.

I There are a range of sketches with different biases, such as the
Count-Mean-Sketch and others4.

4Goyal, Daume & Cormode “Sketch Algorithms for Estimating Point Queries
in NLP” (2012) Proc. EMNLP.



MinHash motivation

I Consider a very large, potentially sparse, binary feature space
for which we have observations A = {xi} and B = {xk}. How
similar are they?

I One natural measure is the Jaccard Similarity:

J(xi, xj) = xi ∩ xj

xi ∪ xj

I This is slow to compute with a large sparse features space,
such as words.

I The solution is to approximate the similarity via MinHash.



MinHash algorithm

I To compute a single MinHash Signature:
I Use a random hash function and apply it to all values in A

and B.
I Compute the minimum of each of these.
I The probability of these being equal turns out to J(A, B).

I To estimate J , we simply do this several times.
I This was used for website Duplicate detection by AltaVista and

was confirmed to be still in use by Google in 2007. There are a
lot of websites. . .

I See e.g. Chris McCormick’s Minhash tutorial or the Mining of
Massive Datasets book and course.

http://mccormickml.com/2015/06/12/minhash-tutorial-with-python-code/
http://mccormickml.com/2015/06/12/minhash-tutorial-with-python-code/
http://mccormickml.com/2015/06/12/minhash-tutorial-with-python-code/


Discussion

I Exploiting convenient algorithms forms a key part of many
high-throughput models.

I You need to do this with big data, to get a smaller dataset you
can work with:
I Many data streams have a power-law distribution of activity:

much of the data are seen only once, whilst some heavy
hitters might make up the majority of the dataset.

I Identification of heavy hitters and singletons allows them to be
treated specially which can massively reduce computational
burden.

I Remember not to use complicated approximate algorithms if
you can simply store everything in memory and count it.



References
I Advanced algorithms:

I The Mining of Massive Datasets book and course.
I Risto Tuomainen Data Sampling for Big Data, covering

sampling, filtering, sketching, etc.
I Streaming histogram implementation
I Bill Mill’s excellent Bloomfilter practical
I Chris McCormick’s Minhash tutorial
I Python implementation of Count Min Sketch by Rafael

Carrascosa (part of PyPI)
I Leo Martel notes on Streaming Data Algorithms which is notes

on the paper
I Cormode’s notes on Count-Min Sketch
I Chakrabarti’s Lecture Notes on Data Stream Algorithms
I Broder & Mitzenmacher “Network Applications of Bloom

Filters: A Survey” (2003) Internet Mathematics 1:485-509
I Geravand & Ahmadi “Bloom filter applications in network

security: A state-of-the-art survey” (2013) Computer Networks
57:4047-4064

I Goyal, Daume & Cormode “Sketch Algorithms for Estimating
Point Queries in NLP” (2012) Proc. EMNLP.

http://mccormickml.com/2015/06/12/minhash-tutorial-with-python-code/
https://www.cs.helsinki.fi/u/jilu/paper/tuomainen.pdf
https://github.com/VividCortex/gohistogram
https://llimllib.github.io/bloomfilter-tutorial/
http://mccormickml.com/2015/06/12/minhash-tutorial-with-python-code/
https://github.com/rafacarrascosa/countminsketch
https://cs.stanford.edu/~rishig/courses/ref/l12b.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/cmencyc.pdf
https://www.cs.dartmouth.edu/~ac/Teach/CS49-Fall11/Notes/lecnotes.pdf


References

I Data structures:
I Cormen et al 2010 Introduction to Algorithms is very accessible

and recommended for data structures.
I Open DSA - Data Structures and Algorithms.

https://github.com/mejibyte/competitive_programming/blob/master/lib/Books/Introduction.to.Algorithms.3rd.Edition.Sep.2010.pdf
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/HashFuncExamp.html

