
Analysing Algorithms

Daniel Lawson — University of Bristol

Lecture 09.1 (v2.0.0)



Shall we learn about Turing Machines?



Questions

I Can we prove that one algorithm is faster than another?
I What does O(f(n)) mean?
I What is computational complexity?
I What is the best sorting algorithm? What is “best”?



Runtime - motivation

I Consider our algorithm run on data D1:
I Different programming languages/compiler/hardware
I How do we predict its runtime elsewhere?



Why study algorithms?

I Algorithms underlie every machine-learning method.
I Theoretical statements about algorithms can be made,

including:
I How long does an algorithm take to run?
I What guarantees can be made about the answer an algorithm

returns?
I In some cases, carefully chosen algorithms can achieve

either perfect or usefully good performance at a vanishing
fraction of the run time of a naive implementation.

I This can lead to a solution on a single machine that is
superior to that of a massively parallel implementation using
distributed computing.



Algorithmic concerns

I We typically care about:
I How long does the algorithm run for? Under which

circumstances?
I How do they trade off runtime and memory requirement?

I Some special values include in-place methods (which have a
constant memory requirement) and streaming methods which
visit the data exactly once each (usually with a constant-sized
memory).

I Proofs typically describe the scaling of these properties, but in
practice the constants are very important!



Algorithmic complexity: Big O Notation

I O(n): An upper bound as a function of data size n
I g(n) = O(f(n)):

I ∃n0, k ∈ N such that:
I ∀n ≥ n0:
I g(n) ≤ k · f(n)



Algorithmic complexity: Big Omega Notation

I Ω(n): A lower bound a function of data size n
I g(n) = Ω(f(n)):

I ∃n0, k ∈ N such that:
I ∀n ≥ n0:
I g(n) ≥ k · f(n)



Algorithmic complexity: Big Theta Notation

I Θ(n): A tight bound as a function of data size n
I g(n) = Θ(f(n)):

I ∃n0, k1, k2 ∈ N such that:
I ∀n ≥ n0:
I k1 · f(n) ≤ g(n) ≤ k2 · f(n)

I i.e. the bound is strict.



Complexity examples

I n ∈ O(n2)
I n ∈ O(n) as well
I n ∈ Ω(n)

I 2n2 + n+ 10 ∈ O(n2)
I log(n) ∈ O(nε) for all ε > 0
I If f(n) ∈ O(g(n)) then g(n) ∈ Ω(f(n))
I If f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)) then f(n) ∈ Θ(g(n))
I If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) then
f1(n) · f2(n) ∈ O(g1(n) · g2(n))

I If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) then
f1(n) + f2(n) ∈ O(max(g1(n), g2(n)))

I 2n2 + 3n+ 1 = 2n2 + Θ(n) = Θ(n2)



Algorithmic complexity: Probabilistic Analysis

I Sometimes we don’t want the worst-case behaviour out of all
possible inputs

I In these scenarios average-case run time is often reported
I This is typically the average over the entire input space
I This should make the statistician in you concerned!

I Randomized algorithms are also important
I In these the answer may be random, and take a random amount

of time, for a given input!
I e.g. MCMC, etc
I Again the expected run time is often reported

I We can discuss Θ, Ω and O of the expected runtime
I Clearly the distribution of the input data is important
I Some worst-case scenarios have “measure 0” (i.e. will never

occur in practice)



Complexity and constants

I Consider the following functions:

import time
def constant_fun(n,k):

time.sleep(k * k);
def linear_fun(n,k):

for i in range(n):
time.sleep(1);

I Clearly linear_fun is faster for n < k2. We need to take into
account k and whether it scales with n.

I In practice k is often truly a constant but can be any scale
compared to n. The accounting therefore needs to retain it.

I Example: SVD is O(min(mn2,m2n))
I Complexity classes only describe asymptotic behaviour for

large n



Divide and conquer

I One of the most popular strategies is Divide and Conquer, in
which we make many sub-problems, each of which is solvable.

I This is typically valuable for parallellism
I It also makes sense to apply the algorithm recursively.

I In which case we obtain expressions like:

T (n) = aT (n/k) +D(n) if n ≥ c,

I and T (n) = Θ(1) otherwise.
I This recursion is a relatively straightforward infinite sum

(exercises) and leads to T (n) = Θ(n logk(n))

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm


Other key concepts

I Worst case cost conditions: can require care when looking up
the answer.
I For example, some data structures have O(n) lookup cost if the

data are missing, but much better if the data are present.
I Also some costs are predictable and rare, leading to. . .

I Amortised cost: The long term, average worst case cost,
which is often better than the single case cost.
I For example, some data structures must be periodically rebuilt

when they get too big, an expensive action. But this is done
rarely by construction.



Algorithm Example (1)

I What is the complexity of the following algorithm?
procedure Example(a, b, n)

i← 1
while i ≤ n do

a← f1(b, n)
b← f2(a, n)
i← i+ 1

end while
return b

end procedure
I fi(a, n) has runtime Ti(n)
I Inside loop is O(T1(n) + T2(n))
I Total O[n(T1(n) + T2(n))]



Algorithm Example (2)

I Compare to the following algorithm?
procedure Example(a, b, n)

i← 1
while i ≤ n do

a← f1(b, n)
b← f2(a, n)
i← 2 · i

end while
return b

end procedure
I Inside loop is O(T1(n) + T2(n))
I Total O[log(n)(T1(n) + T2(n))]



Sorting examples

I We have some data: 1, 4, 6, 2, 3, 7, 5, · · ·
I We want to sort the data into ascending order:

1, 2, 3, 4, 5, 6, 7, · · ·
I What is the best1 algorithm?

I Insertion sort is Θ(n2), but operates in-place.
I Merge sort is Θ(n log(n)), but memory requirements grow

with data size.
I Heap sort is Θ(n log(n)) and sorts in place.
I Quick sort is Θ(n2), but Θ(n log(n)) expected time, and is

often fastest in practice.
I Counting sort allows array indices to be sorted in Θ(n) by

exploiting knowledge that all integers are present.
I Bucket sort is Θ(n2), though Θ(n) average case (if data are

Uniform!)

1Cormen et al 2010 Introduction to Algorithms

https://github.com/mejibyte/competitive_programming/blob/master/lib/Books/Introduction.to.Algorithms.3rd.Edition.Sep.2010.pdf


Quicksort: a Recursion Example

procedure QuickSort(A)
if len(A) == 1 then

return A
else

x← A
Al ← {a ∈ A : a < x}
Ah ← {a ∈ A : a >

x}
Ax ← {a ∈ A : a =

x}
Sl ← QuickSort(Al)
Sh ← QuickSort(Ah)
return [Sl, Ax, Sh]

end if
end procedure
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What if we can choose the
median element of A?

T (n)
= 2T (n2 ) + n

= 2(2T (n4 ) + n

2 ) + n

= . . .

= 2lognT (1) +
logn∑
i=1

n

= Θ(n logn)
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Other types of complexity

I Complexity questions are primarily asked about:
I Computation (time)
I Space (memory)
I Communication (data transfer)

I They are all studied analogously - it is the unit of counting that
changes

I Despite that, the theory is quite different



Space complexity

I Simply the amount of memory that an algorithm needs
I You can calculate it simply by adding the memory allocations
I Space required is additional to the input, which is not

counted - this can conceptually not be stored at all, as in
e.g. streaming algorithms

I Formally defined in terms of the Turing Machine (8.1.3)
I It can often be traded for time complexity, e.g. by storing

intermediate results vs revisiting the calculation
I For a Data Scientist, this trade off is critical!
I We use the same notation



Space complexity example (1)

I Problem: Find x, y in X s.t. x+ y = T (known to exist)
I Solution 1:

import heapq
heapq.heapsort(X)
i=0;j=n-1;
while(X[i]+X[j]!=T):

if X[i]+X[j]<T:
i=i+1

else:
j=j-1

I Heapsort has O(1) space complexity
I Therefore the whole algorithm is O(1) in space
I And time complexity O(n log(n) + n) = O(n log(n))



Space complexity example (2)

I Find x, y in X s.t. x+ y = T (known to exist)
I Solution 2:

D={}
for i in range(len(X)):

D[T-X[i]]=i
for x in X:

y=T-x
if y in D:

return X[D[y]],x

I This is O(n) in space
I Hash lookups are O(1) average case complexity (O(n) worst

case - which does not apply here!)
I So this algorithm is O(n) in time too



Communication Complexity

I Alice knows x ∈ X, Bob knows y ∈ Y
I Together they want to compute f(x, y) where f ∈ X ×Y → Z
I Via a pre-arranged protocol P determining what they send
I The communication cost is the number of bits sent 2

2According to Arora and Barak Computational Complexity: A Modern
Approach. Hopcroft and Ullman Introduction to Automata Theory, Languages,
and Computation use a 7-tuple.

https://theory.cs.princeton.edu/complexity/book.pdf
https://theory.cs.princeton.edu/complexity/book.pdf
https://books.google.co.uk/books/about/Introduction_to_Automata_Theory_Language.html?id=G_BQAAAAMAAJ&redir_esc=y
https://books.google.co.uk/books/about/Introduction_to_Automata_Theory_Language.html?id=G_BQAAAAMAAJ&redir_esc=y


Communication Complexity

I The Overall cost of P is C(P ) = maxx,y[P (x, y)], i.e. the
maximum possible cost for all data

I The Communication complexity of f is
C(f) = minP∈P(C[P (x, y)])

I It is the minimum number of bits needed to compute f(x, y)
for any x, y

I Communication Complexity Theory describes C(f), typically by
finding bounds (upper and lower) for a given f
I Again typically as a function of the size of x and y, and always

for some well defined spaces X and Y .
I Note that there is a trivial bound of n+ 1 for transferring all

the data! (and then the answer back)



Communication Complexity Examples

I f(x, y) = Parity([x, y])
I Parity=mod2(

∑n
i=1 xi)

I C(f(x, y)) = 2 because Alice calculates the Parity of x, Bob
the Parity of y, and they each communicate their own parity

I f(x, y) = Equality(x, y)
I i.e. 1 if xi = yi ∀i, and 0 otherwise
I C(f(x, y)) = n because every bit must be compared

I Typically approximate algorithms allow dramatically lower
complexity
I All the interesting theory is in this space



What is communication complexity theory good for?

I There are lots of immediate applications
I Optimisation of computer networks
I Parallel algorithms: communication between multiple cores on

a CPU, or nodes of a cluster
I And basically anything involving the internet!
I Especially differential privacy (Block 12)

I There are many more less immediate applications
I Particularly as a tool for algorithm and data structure lower

bounds



The Universal Turing Machine



High level description

I Consider a function f({x}d) where {x}d is a string of d bits (0
or 1)

I An algorithm for computing f is a set of rules such that we
compute f for any {x}d

I d is arbitrary
I The set of rules is fixed
I But can be arbitrarily complex and applied arbitrarily many

times
I Rules are made up of elementary operations:

1. Read a symbol of input
2. Read a symbol from a “memory”
3. Based on these, write a symbol to the “memory”
4. Either stop and output TRUE, FALSE, or choose a new rule



Formal description

I A Turing Machine is a 3-tuple3 (Q,Γ, δ):
I where Q,Γ are finite sets and:

I Q is the set of all states, containing special states:
I q0 ∈ Q is the start state
I qaccept ∈ Q is a set of accept states
I qreject ∈ Q is a set of reject state where qaccept 6= qreject

I Γ is the tape (“memory”) alphabet with ␣∈ Γ. The input space
is Σ ⊂ Γ excluding ␣(the blank space).

I δ : Q× Γ→ Q× Γ× {L,R} is a transition function.

3According to Arora and Barak Computational Complexity: A Modern
Approach. Hopcroft and Ullman Introduction to Automata Theory, Languages,
and Computation use a 7-tuple.

https://theory.cs.princeton.edu/complexity/book.pdf
https://theory.cs.princeton.edu/complexity/book.pdf
https://books.google.co.uk/books/about/Introduction_to_Automata_Theory_Language.html?id=G_BQAAAAMAAJ&redir_esc=y
https://books.google.co.uk/books/about/Introduction_to_Automata_Theory_Language.html?id=G_BQAAAAMAAJ&redir_esc=y


Turing Machine Example
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Turing Machine Equivalence

I Turing Machines with the following properties are all
equivalent:
I A binary only alphabet
I Multiple tapes
I A doubly infinite tape
I Designated input and/or output tapes
I Universal Turing Machines



Conceptual objects in algorithms

I We have now met at least the following classes of object:

1. Functions, which are conceptual mathematical objects
2. Algorithms, which are implementations that compute a

function, comprising:
a. Pseudocode, which are human-readable algorithms (though

can still be precise)
b. Computer code, which is a machine-readable algorithm,
c. Turing machines programmes, which are mathematical

representations of an algorithm.

I It takes proof to establish equivalence between classes of
Algorithm
I This is important for guaranteeing algorithms give the correct

output
I However, it has been proven that the correspondance between

these exists.



Using Turing Machines

I Turing Machines are a tool for proving properties of Algorithms.
I A wide class of computer architectures map to a Turing Machine
I This allows proofs to ignore implementation details
I Fo example: Programming language and CPU Chipset do not

matter (Finiteness excepting)
I We will not use Turing Machines in proofs!
I What you need to know:

I High level description of the Turing Machine
I That it is used to make algorithmic proofs by connecting a

Turing Machine to a particular algorithm
I They enable a wide class of otherwise disperate computer

architectures to be mapped and shown to be equivalent



Complexity Classes

I We often do not care about the details of a certain function
I We instead ask, “Is this function in a certain complexity class?”



Polynomial Time: P

I An algorithm with time complexity T (n) runs in Polynomial
Time if T (n) ∈ ∪∞

i=1O(ni).
I A language L ∈ P if there exists a Turing machine M such

that:
I M runs in polynomial time for all inputs
I ∀x ∈ L : M(x) = 1
I ∀x 6∈ L : M(x) = 0



Examples of algorithms in P

I Primality Testing: is a number x a prime number?
I Shortest Path in a graph: given two nodes, what is the

shortest path? (for example, Dijkstra’s Algorithm)
I Minimal Weighted Matching: Given n jobs on n machines

with cost matrix cij , how do we allocate jobs? Solvable as an
integer program.

I Pattern Matching: Asking, is a given pattern present in the
data? The runtime depends on the data structure and pattern,
but broad classes are solvable (e.g. graphs)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://sites.math.washington.edu/~raymonda/assignment.pdf
https://en.wikipedia.org/wiki/Pattern_matching
https://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R23.pdf


Non-Determinism

I A Non-Deterministic Turing machine is like a Turing
Machine, except δ can go to multiple states for the same input.

I When a choice of transition is given, the Non-Deterministic
Turing Machine “takes them all simultaneously’ ’.

I The machine accepts if any of the paths accept.

q0

q1
q3 3

q4 7
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Non-Deterministic Polynomial Time: NP

I A language L ∈ NP if there exists a Non-Deterministic
Turing machine M such that:
I M runs in Polynomial Time for all inputs
I ∀x ∈ L : M(x) = 1
I ∀x 6∈ L : M(x) = 0



Examples of algorithms in NP

I Travelling salesman problem: Given a distance matrix
between n cities, is there a route between them all with total
distance less than D?

I Bin packing: Can you place n items into as few fixed-size bins
as possible?

I Boolean satisfiability: Is a set of boolean logic statements
true?

I Integer factorisation: Given a number x, what are its primes?



Data science consequences

I Having an algorithm is the easiest way to prove that f is in a
complexity class.
I It is hard to prove that a problem is not in P!

I Many exact problems seem to be NP.
I We can sometimes do very well with an approximate

algorithm in P. Examples:
I Travelling salesman: exactly solved for Euclidean distances,

Christofides and Serdyukov’s approximation using minimum
weight perfect matching

I Bin packing. . .
I Quantifying approximation error is therefore very important!



Bin packing problem



Bin packing: next fit



Bin packing: next fit



Bin packing: first fit decreasing



Bin packing: first fit decreasing



Addendum

I Complexity classes are not everything!
I Some examples of algorithms in P4:

I Max-Bisection is approximable to within a factor of 0.8776 in
around O(n10100) time

I Energy-driven linkage unfolding algorithm is at most
117607251220365312000n79(lmax/dmin(Θ0))26

I The classic “picture dropping problem” for how to wrap string
such that it that will drop when one nail is removed, with n
nails, can be solved in O(n43737)

I Approximate algorithms (accurate to within (1 + ε) often scale
badly, e.g. O(n1/ε)

4Stack Exchange Polynomial Time algorithms with huge exponent

https://cstheory.stackexchange.com/questions/6660/polynomial-time-algorithms-with-huge-exponent-constant


Wrapup

I Complexity classes are important
I They apply to space, time, communication, memory
I Often we require approximate algorithms:

I with better complexity
I and quantifiable peformance degradation

I However, empirical performance does not always match
asymptotic complexity
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