Analysing Algorithms

Daniel Lawson - University of Bristol

Lecture 09.1 (v2.0.0)

Shall we learn about Turing Machines?

Questions

- Can we prove that one algorithm is faster than another?
- What does $\mathcal{O}(f(n))$ mean?
- What is computational complexity?
- What is the best sorting algorithm? What is "best"?

Runtime - motivation

- Consider our algorithm run on data D_{1} :
- Different programming languages/compiler/hardware
- How do we predict its runtime elsewhere?

Why study algorithms?

- Algorithms underlie every machine-learning method.
- Theoretical statements about algorithms can be made, including:
- How long does an algorithm take to run?
- What guarantees can be made about the answer an algorithm returns?
- In some cases, carefully chosen algorithms can achieve either perfect or usefully good performance at a vanishing fraction of the run time of a naive implementation.
- This can lead to a solution on a single machine that is superior to that of a massively parallel implementation using distributed computing.

Algorithmic concerns

- We typically care about:
- How long does the algorithm run for? Under which circumstances?
- How do they trade off runtime and memory requirement?
- Some special values include in-place methods (which have a constant memory requirement) and streaming methods which visit the data exactly once each (usually with a constant-sized memory).
- Proofs typically describe the scaling of these properties, but in practice the constants are very important!

Algorithmic complexity: Big O Notation

- $\mathcal{O}(n)$: An upper bound as a function of data size n
- $g(n)=\mathcal{O}(f(n))$:
> $\exists n_{0}, k \in \mathbb{N}$ such that:
- $\forall n \geq n_{0}$:
> $g(n) \leq k \cdot f(n)$

Algorithmic complexity: Big Omega Notation

- $\Omega(n)$: A lower bound a function of data size n
- $g(n)=\Omega(f(n))$:
- $\exists n_{0}, k \in \mathbb{N}$ such that:
- $\forall n \geq n_{0}$:
- $g(n) \geq k \cdot f(n)$

Algorithmic complexity: Big Theta Notation

> $\Theta(n)$: A tight bound as a function of data size n

- $g(n)=\Theta(f(n))$:
- $\exists n_{0}, k_{1}, k_{2} \in \mathbb{N}$ such that:
- $\forall n \geq n_{0}$:
> $k_{1} \cdot f(n) \leq g(n) \leq k_{2} \cdot f(n)$
$>$ i.e. the bound is strict.

Complexity examples

> $n \in \mathcal{O}\left(n^{2}\right)$

- $n \in \mathcal{O}(n)$ as well
> $n \in \Omega(n)$
> $2 n^{2}+n+10 \in \mathcal{O}\left(n^{2}\right)$
> $\log (n) \in \mathcal{O}\left(n^{\epsilon}\right)$ for all $\epsilon>0$
- If $f(n) \in \mathcal{O}(g(n))$ then $g(n) \in \Omega(f(n))$
- If $f(n) \in \mathcal{O}(g(n))$ and $f(n) \in \Omega(g(n))$ then $f(n) \in \Theta(g(n))$
- If $f_{1}(n) \in \mathcal{O}\left(g_{1}(n)\right)$ and $f_{2}(n) \in \mathcal{O}\left(g_{2}(n)\right)$ then
$f_{1}(n) \cdot f_{2}(n) \in \mathcal{O}\left(g_{1}(n) \cdot g_{2}(n)\right)$
- If $f_{1}(n) \in \mathcal{O}\left(g_{1}(n)\right)$ and $f_{2}(n) \in \mathcal{O}\left(g_{2}(n)\right)$ then
$f_{1}(n)+f_{2}(n) \in \mathcal{O}\left(\max \left(g_{1}(n), g_{2}(n)\right)\right)$
$>2 n^{2}+3 n+1=2 n^{2}+\Theta(n)=\Theta\left(n^{2}\right)$

Algorithmic complexity: Probabilistic Analysis

- Sometimes we don't want the worst-case behaviour out of all possible inputs
- In these scenarios average-case run time is often reported
$>$ This is typically the average over the entire input space
$>$ This should make the statistician in you concerned!
$>$ Randomized algorithms are also important
- In these the answer may be random, and take a random amount of time, for a given input!
$>$ e.g. MCMC, etc
\rightarrow Again the expected run time is often reported
- We can discuss Θ, Ω and \mathcal{O} of the expected runtime
- Clearly the distribution of the input data is important
- Some worst-case scenarios have "measure 0" (i.e. will never occur in practice)

Complexity and constants

- Consider the following functions:

```
import time
def constant_fun(n,k):
    time.sleep(k * k);
def linear_fun(n,k):
    for i in range(n):
        time.sleep(1);
```

- Clearly linear_fun is faster for $n<k^{2}$. We need to take into account k and whether it scales with n.
- In practice k is often truly a constant but can be any scale compared to n. The accounting therefore needs to retain it.
- Example: SVD is $\mathcal{O}\left(\min \left(m n^{2}, m^{2} n\right)\right)$
- Complexity classes only describe asymptotic behaviour for large n

Divide and conquer

- One of the most popular strategies is Divide and Conquer, in which we make many sub-problems, each of which is solvable.
- This is typically valuable for parallellism
- It also makes sense to apply the algorithm recursively.
- In which case we obtain expressions like:

$$
T(n)=a T(n / k)+D(n) \quad \text { if } \quad n \geq c,
$$

- and $T(n)=\Theta(1)$ otherwise.
- This recursion is a relatively straightforward infinite sum (exercises) and leads to $T(n)=\Theta\left(n \log _{k}(n)\right)$

Other key concepts

- Worst case cost conditions: can require care when looking up the answer.
- For example, some data structures have $\mathcal{O}(n)$ lookup cost if the data are missing, but much better if the data are present.
- Also some costs are predictable and rare, leading to...
- Amortised cost: The long term, average worst case cost, which is often better than the single case cost.
- For example, some data structures must be periodically rebuilt when they get too big, an expensive action. But this is done rarely by construction.

Algorithm Example (1)

What is the complexity of the following algorithm?
procedure $\operatorname{ExAMPLE}(a, b, n)$
$i \leftarrow 1$
while $i \leq n$ do

$$
\begin{aligned}
& a \leftarrow f_{1}(b, n) \\
& b \leftarrow f_{2}(a, n) \\
& i \leftarrow i+1
\end{aligned}
$$

end while
return b

end procedure

- $f_{i}(a, n)$ has runtime $T_{i}(n)$
- Inside loop is $\mathcal{O}\left(T_{1}(n)+T_{2}(n)\right)$
- Total $\mathcal{O}\left[n\left(T_{1}(n)+T_{2}(n)\right)\right]$

Algorithm Example (2)

- Compare to the following algorithm?
procedure EXAMPLE (a, b, n)
$i \leftarrow 1$
while $i \leq n$ do

$$
\begin{aligned}
& a \leftarrow f_{1}(b, n) \\
& b \leftarrow f_{2}(a, n) \\
& i \leftarrow 2 \cdot i
\end{aligned}
$$

end while
return b

end procedure

- Inside loop is $\mathcal{O}\left(T_{1}(n)+T_{2}(n)\right)$
- Total $\mathcal{O}\left[\log (n)\left(T_{1}(n)+T_{2}(n)\right)\right]$

Sorting examples

- We have some data: $1,4,6,2,3,7,5, \cdots$
- We want to sort the data into ascending order:
$1,2,3,4,5,6,7, \cdots$
What is the best ${ }^{1}$ algorithm?
- Insertion sort is $\Theta\left(n^{2}\right)$, but operates in-place.
- Merge sort is $\Theta(n \log (n))$, but memory requirements grow with data size.
- Heap sort is $\Theta(n \log (n))$ and sorts in place.
- Quick sort is $\Theta\left(n^{2}\right)$, but $\Theta(n \log (n))$ expected time, and is often fastest in practice.
- Counting sort allows array indices to be sorted in $\Theta(n)$ by exploiting knowledge that all integers are present.
- Bucket sort is $\Theta\left(n^{2}\right)$, though $\Theta(n)$ average case (if data are Uniform!)

[^0]
Quicksort: a Recursion Example

Quicksort: a Recursion Example

procedure QuickSort (A) if $\operatorname{len}(A)==1$ then return A
else

$$
\begin{aligned}
& x \leftarrow A \\
& A_{l} \leftarrow\{a \in A: a<x\} \\
& A_{h} \leftarrow\{a \in A: a>
\end{aligned}
$$

$x\}$

$$
A_{x} \leftarrow\{a \in A: a=
$$

$x\}$
$S_{l} \leftarrow$ QuickSort $\left(A_{l}\right)$
$S_{h} \leftarrow$ QuickSort $\left(A_{h}\right)$
return $\left[S_{l}, A_{x}, S_{h}\right]$
end if
end procedure

What if we can choose the median element of A ?

Quicksort: a Recursion Example

procedure QuickSort (A) if $\operatorname{len}(A)==1$ then return A
else

$$
\begin{aligned}
& x \leftarrow A \\
& A_{l} \leftarrow\{a \in A: a<x\} \\
& A_{h} \leftarrow\{a \in A: a>
\end{aligned}
$$

$x\}$
$A_{x} \leftarrow\{a \in A: a=$
$x\}$
$S_{l} \leftarrow$ QuickSort $\left(A_{l}\right)$
$S_{h} \leftarrow$ QuickSort $\left(A_{h}\right)$
return $\left[S_{l}, A_{x}, S_{h}\right]$
end if
end procedure

What if we can choose the median element of A ?
$T(n)$

Quicksort: a Recursion Example

procedure QuickSort (A) if $\operatorname{len}(A)==1$ then return A
else

$$
\begin{aligned}
& x \leftarrow A \\
& A_{l} \leftarrow\{a \in A: a<x\} \\
& A_{h} \leftarrow\{a \in A: a>
\end{aligned}
$$

$x\}$

$$
A_{x} \leftarrow\{a \in A: a=
$$

$x\}$
$S_{l} \leftarrow$ QuickSort $\left(A_{l}\right)$
$S_{h} \leftarrow$ QuickSort $\left(A_{h}\right)$
return $\left[S_{l}, A_{x}, S_{h}\right]$
end if
end procedure

What if we can choose the median element of A ?

$$
\begin{aligned}
T(n) & \\
\quad & =2 T\left(\frac{n}{2}\right)+n
\end{aligned}
$$

Quicksort: a Recursion Example

procedure QuickSort (A) if $\operatorname{len}(A)==1$ then return A
else

$$
\begin{aligned}
& x \leftarrow A \\
& A_{l} \leftarrow\{a \in A: a<x\} \\
& A_{h} \leftarrow\{a \in A: a>
\end{aligned}
$$

$x\}$
$A_{x} \leftarrow\{a \in A: a=$
$x\}$
$S_{l} \leftarrow$ QuickSort $\left(A_{l}\right)$
$S_{h} \leftarrow$ QuickSort $\left(A_{h}\right)$
return $\left[S_{l}, A_{x}, S_{h}\right]$
end if
end procedure

What if we can choose the median element of A ?

$$
\begin{aligned}
T(n) & \\
& =2 T\left(\frac{n}{2}\right)+n \\
& =2\left(2 T\left(\frac{n}{4}\right)+\frac{n}{2}\right)+n
\end{aligned}
$$

Quicksort: a Recursion Example

procedure QuickSort (A) if $\operatorname{len}(A)==1$ then return A
else

$$
\begin{aligned}
& x \leftarrow A \\
& A_{l} \leftarrow\{a \in A: a<x\} \\
& A_{h} \leftarrow\{a \in A: a>
\end{aligned}
$$

$x\}$
$A_{x} \leftarrow\{a \in A: a=$
$x\}$
$S_{l} \leftarrow$ QuickSort $\left(A_{l}\right)$
$S_{h} \leftarrow$ QuickSort $\left(A_{h}\right)$
return $\left[S_{l}, A_{x}, S_{h}\right]$
end if
end procedure

What if we can choose the median element of A ?

$$
\begin{aligned}
T(n) & \\
& =2 T\left(\frac{n}{2}\right)+n \\
& =2\left(2 T\left(\frac{n}{4}\right)+\frac{n}{2}\right)+n
\end{aligned}
$$

Quicksort: a Recursion Example

procedure QuickSort (A)
if $\operatorname{len}(A)==1$ then return A
else

$$
\begin{aligned}
& x \leftarrow A \\
& A_{l} \leftarrow\{a \in A: a<x\} \\
& A_{h} \leftarrow\{a \in A: a>
\end{aligned}
$$

$x\}$
$A_{x} \leftarrow\{a \in A: a=$
$x\}$
$S_{l} \leftarrow$ QuickSort $\left(A_{l}\right)$
$S_{h} \leftarrow$ QuickSort $\left(A_{h}\right)$
return $\left[S_{l}, A_{x}, S_{h}\right]$
end if
end procedure

What if we can choose the median element of A ?

$$
\begin{aligned}
T(n) & \\
& =2 T\left(\frac{n}{2}\right)+n \\
& =2\left(2 T\left(\frac{n}{4}\right)+\frac{n}{2}\right)+n \\
& =\cdots \\
& =2^{\log n} T(1)+\sum_{i=1}^{\log n} n
\end{aligned}
$$

Quicksort: a Recursion Example

procedure QuickSort (A)
if $\operatorname{len}(A)==1$ then return A
else
$x \leftarrow A$
$A_{l} \leftarrow\{a \in A: a<x\}$
$A_{h} \leftarrow\{a \in A: a>$
$x\}$
$A_{x} \leftarrow\{a \in A: a=$
$x\}$
$S_{l} \leftarrow$ QuickSort $\left(A_{l}\right)$
$S_{h} \leftarrow$ QuickSort $\left(A_{h}\right)$
return $\left[S_{l}, A_{x}, S_{h}\right]$ end if
end procedure

What if we can choose the median element of A ?

$$
\begin{aligned}
T(n) & =2 T\left(\frac{n}{2}\right)+n \\
& =2\left(2 T\left(\frac{n}{4}\right)+\frac{n}{2}\right)+n \\
& =\cdots \\
& =2^{\log n} T(1)+\sum_{i=1}^{\log n} n \\
& =\Theta(n \log n)
\end{aligned}
$$

Quicksort: a Recursion Example

```
procedure QuickSort( \(A\) )
    if \(\operatorname{len}(A)==1\) then
        return \(A\)
    else
        \(x \leftarrow A\)
        \(A_{l} \leftarrow\{a \in A: a<x\}\)
        \(A_{h} \leftarrow\{a \in A: a>\)
\(x\}\)
        \(A_{x} \leftarrow\{a \in A: a=\)
\(x\}\)
        \(S_{l} \leftarrow\) QuickSort \(\left(A_{l}\right)\)
        \(S_{h} \leftarrow\) QuickSort \(\left(A_{h}\right)\)
        return \(\left[S_{l}, A_{x}, S_{h}\right]\)
    end if
end procedure
```

What if we always choose the largest element of A ?

Quicksort: a Recursion Example

procedure QuickSort (A)
if $\operatorname{len}(A)==1$ then return A
else

$$
\begin{aligned}
& x \leftarrow A \\
& A_{l} \leftarrow\{a \in A: a<x\} \\
& A_{h} \leftarrow\{a \in A: a>
\end{aligned}
$$

$x\}$
$A_{x} \leftarrow\{a \in A: a=$
$x\}$
$S_{l} \leftarrow$ QuickSort $\left(A_{l}\right)$
$S_{h} \leftarrow$ QuickSort $\left(A_{h}\right)$
return $\left[S_{l}, A_{x}, S_{h}\right]$
end if
end procedure

What if we always choose the largest element of A ?
$T(n)$

Quicksort: a Recursion Example

procedure QuickSort (A)
if $\operatorname{len}(A)==1$ then return A
else

$$
\begin{aligned}
& x \leftarrow A \\
& A_{l} \leftarrow\{a \in A: a<x\} \\
& A_{h} \leftarrow\{a \in A: a>
\end{aligned}
$$

$x\}$
$A_{x} \leftarrow\{a \in A: a=$
$x\}$
$S_{l} \leftarrow$ QuickSort $\left(A_{l}\right)$
$S_{h} \leftarrow$ QuickSort $\left(A_{h}\right)$
return $\left[S_{l}, A_{x}, S_{h}\right]$
end if
end procedure
What if we always choose the largest element of A ?

$$
\begin{aligned}
T(n) & \\
& =T(n-1)+n
\end{aligned}
$$

Quicksort: a Recursion Example

procedure QuickSort (A)
if $\operatorname{len}(A)==1$ then return A
else

$$
\begin{aligned}
& x \leftarrow A \\
& A_{l} \leftarrow\{a \in A: a<x\} \\
& A_{h} \leftarrow\{a \in A: a>
\end{aligned}
$$

$x\}$

$$
A_{x} \leftarrow\{a \in A: a=
$$

$x\}$

$$
S_{l} \leftarrow \text { QuickSort }\left(A_{l}\right)
$$

$$
S_{h} \leftarrow \text { QuickSort }\left(A_{h}\right)
$$

return $\left[S_{l}, A_{x}, S_{h}\right]$
end if
end procedure
What if we always choose the largest element of A ?

$$
\begin{aligned}
T(n) & \\
& =T(n-1)+n \\
& =(T(n-2)+n)+n
\end{aligned}
$$

Quicksort: a Recursion Example

procedure QuickSort (A)
if $\operatorname{len}(A)==1$ then return A
else

$$
\begin{aligned}
& x \leftarrow A \\
& A_{l} \leftarrow\{a \in A: a<x\} \\
& A_{h} \leftarrow\{a \in A: a>
\end{aligned}
$$

$x\}$
$A_{x} \leftarrow\{a \in A: a=$
$x\}$
$S_{l} \leftarrow$ QuickSort $\left(A_{l}\right)$
$S_{h} \leftarrow$ QuickSort $\left(A_{h}\right)$
return $\left[S_{l}, A_{x}, S_{h}\right]$
end if
end procedure
What if we always choose the largest element of A ?

$$
\begin{aligned}
T(n) & \\
& =T(n-1)+n \\
& =(T(n-2)+n)+n \\
& =\cdots
\end{aligned}
$$

Quicksort: a Recursion Example

procedure QuickSort(A)
if $\operatorname{len}(A)==1$ then return A
else

$$
\begin{aligned}
& x \leftarrow A \\
& A_{l} \leftarrow\{a \in A: a<x\} \\
& A_{h} \leftarrow\{a \in A: a>
\end{aligned}
$$

$x\}$
$A_{x} \leftarrow\{a \in A: a=$
$x\}$

$$
S_{l} \leftarrow \text { QuickSort }\left(A_{l}\right)
$$

$S_{h} \leftarrow$ QuickSort $\left(A_{h}\right)$
return $\left[S_{l}, A_{x}, S_{h}\right]$
end if
end procedure
What if we always choose the largest element of A ?

$$
\begin{aligned}
T(n) & \\
& =T(n-1)+n \\
& =(T(n-2)+n)+n \\
& =\cdots \\
& =T(1)+\sum_{i=1}^{n} i
\end{aligned}
$$

Quicksort: a Recursion Example

procedure QuickSort(A)
if $\operatorname{len}(A)==1$ then return A
else

$$
\begin{aligned}
& x \leftarrow A \\
& A_{l} \leftarrow\{a \in A: a<x\} \\
& A_{h} \leftarrow\{a \in A: a>
\end{aligned}
$$

$x\}$
$A_{x} \leftarrow\{a \in A: a=$
$x\}$

$$
S_{l} \leftarrow \text { QuickSort }\left(A_{l}\right)
$$

$S_{h} \leftarrow$ QuickSort $\left(A_{h}\right)$
return $\left[S_{l}, A_{x}, S_{h}\right]$
end if
end procedure
What if we always choose the largest element of A ?

$$
\begin{aligned}
T(n) & \\
& =T(n-1)+n \\
& =(T(n-2)+n)+n \\
& =\cdots \\
& =T(1)+\sum_{i=1}^{n} i \\
& =n(n-1) / 2=\Theta\left(n^{2}\right)
\end{aligned}
$$

Other types of complexity

- Complexity questions are primarily asked about:
- Computation (time)
- Space (memory)
- Communication (data transfer)
- They are all studied analogously - it is the unit of counting that changes
$>$ Despite that, the theory is quite different

Space complexity

- Simply the amount of memory that an algorithm needs
- You can calculate it simply by adding the memory allocations
- Space required is additional to the input, which is not counted - this can conceptually not be stored at all, as in e.g. streaming algorithms
- Formally defined in terms of the Turing Machine (8.1.3)
- It can often be traded for time complexity, e.g. by storing intermediate results vs revisiting the calculation
- For a Data Scientist, this trade off is critical!
- We use the same notation

Space complexity example (1)

- Problem: Find x, y in X s.t. $x+y=T$ (known to exist)
- Solution 1:
import heapq
heapq.heapsort (X)
i=0; $j=n-1$;
while (X[i]+X[j]!=T):
if $\mathrm{X}[\mathrm{i}]+\mathrm{X}[\mathrm{j}]<\mathrm{T}$:

$$
i=i+1
$$

else:

$$
j=j-1
$$

- Heapsort has $\mathcal{O}(1)$ space complexity
- Therefore the whole algorithm is $\mathcal{O}(1)$ in space
- And time complexity $\mathcal{O}(n \log (n)+n)=\mathcal{O}(n \log (n))$

Space complexity example (2)

$>$ Find x, y in X s.t. $x+y=T$ (known to exist)

- Solution 2:

```
D={}
for i in range(len(X)):
    D[T-X[i]]=i
for x in X:
    y=T-x
    if y in D:
        return X[D[y]],x
```

- This is $\mathcal{O}(n)$ in space
- Hash lookups are $\mathcal{O}(1)$ average case complexity $(\mathcal{O}(n)$ worst case - which does not apply here!)
- So this algorithm is $\mathcal{O}(n)$ in time too

Communication Complexity

- Alice knows $x \in X$, Bob knows $y \in Y$
- Together they want to compute $f(x, y)$ where $f \in X \times Y \rightarrow Z$
- Via a pre-arranged protocol P determining what they send
- The communication cost is the number of bits sent ${ }^{2}$

[^1]
Communication Complexity

- The Overall cost of P is $\mathrm{C}(P)=\max _{x, y}[P(x, y)]$, i.e. the maximum possible cost for all data
- The Communication complexity of f is $\mathrm{C}(f)=\min _{P \in \mathcal{P}}(C[P(x, y)])$
- It is the minimum number of bits needed to compute $f(x, y)$ for any x, y
- Communication Complexity Theory describes $\mathrm{C}(f)$, typically by finding bounds (upper and lower) for a given f
- Again typically as a function of the size of x and y, and always for some well defined spaces X and Y.
- Note that there is a trivial bound of $n+1$ for transferring all the data! (and then the answer back)

Communication Complexity Examples

$\triangleright f(x, y)=\operatorname{Parity}([x, y])$

- Parity $=\bmod _{2}\left(\sum_{i=1}^{n} x_{i}\right)$
- $\mathrm{C}(f(x, y))=2$ because Alice calculates the Parity of x, Bob the Parity of y, and they each communicate their own parity
$>f(x, y)=\operatorname{Equality}(x, y)$
$>$ i.e. 1 if $x_{i}=y_{i} \quad \forall i$, and 0 otherwise
- $\mathrm{C}(f(x, y))=n$ because every bit must be compared
- Typically approximate algorithms allow dramatically lower complexity
- All the interesting theory is in this space

What is communication complexity theory good for?

- There are lots of immediate applications
- Optimisation of computer networks
- Parallel algorithms: communication between multiple cores on a CPU, or nodes of a cluster
- And basically anything involving the internet!
- Especially differential privacy (Block 12)
- There are many more less immediate applications
- Particularly as a tool for algorithm and data structure lower bounds

The Universal Turing Machine

Turing machines

High level description

- Consider a function $f\left(\{x\}^{d}\right)$ where $\{x\}^{d}$ is a string of d bits (0 or 1)
- An algorithm for computing f is a set of rules such that we compute f for any $\{x\}^{d}$
$\downarrow d$ is arbitrary
- The set of rules is fixed
- But can be arbitrarily complex and applied arbitrarily many times
- Rules are made up of elementary operations:

1. Read a symbol of input
2. Read a symbol from a "memory"
3. Based on these, write a symbol to the "memory"
4. Either stop and output TRUE, FALSE, or choose a new rule

Formal description

- A Turing Machine is a 3 -tuple ${ }^{3}(Q, \Gamma, \delta)$:
- where Q, Γ are finite sets and:
- Q is the set of all states, containing special states:
- $q_{0} \in Q$ is the start state
$\downarrow q_{\text {accept }} \in Q$ is a set of accept states
$>q_{\text {reject }} \in Q$ is a set of reject state where $q_{\text {accept }} \neq q_{\text {reject }}$
$\nabla \Gamma$ is the tape ("memory") alphabet with $\sqcup \in$. The input space is $\Sigma \subset \Gamma$ excluding ৬(the blank space).
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is a transition function.
${ }^{3}$ According to Arora and Barak Computational Complexity: A Modern
Approach. Hopcroft and Ullman Introduction to Automata Theory, Languages,
and Computation use a 7-tuple.

Turing Machine Example

Turing Machine Equivalence

- Turing Machines with the following properties are all equivalent:
- A binary only alphabet
- Multiple tapes
- A doubly infinite tape
- Designated input and/or output tapes
- Universal Turing Machines

Conceptual objects in algorithms

- We have now met at least the following classes of object:

1. Functions, which are conceptual mathematical objects
2. Algorithms, which are implementations that compute a function, comprising:
a. Pseudocode, which are human-readable algorithms (though can still be precise)
b. Computer code, which is a machine-readable algorithm,
c. Turing machines programmes, which are mathematical representations of an algorithm.

- It takes proof to establish equivalence between classes of Algorithm
- This is important for guaranteeing algorithms give the correct output
- However, it has been proven that the correspondance between these exists.

Using Turing Machines

- Turing Machines are a tool for proving properties of Algorithms.
- A wide class of computer architectures map to a Turing Machine
- This allows proofs to ignore implementation details
- Fo example: Programming language and CPU Chipset do not matter (Finiteness excepting)
- We will not use Turing Machines in proofs!
- What you need to know:
- High level description of the Turing Machine
- That it is used to make algorithmic proofs by connecting a Turing Machine to a particular algorithm
- They enable a wide class of otherwise disperate computer architectures to be mapped and shown to be equivalent

Complexity Classes

- We often do not care about the details of a certain function
- We instead ask, "Is this function in a certain complexity class?"

Polynomial Time: P

- An algorithm with time complexity $T(n)$ runs in Polynomial Time if $T(n) \in \cup_{i=1}^{\infty} \mathcal{O}\left(n^{i}\right)$.
- A language $L \in \mathrm{P}$ if there exists a Turing machine M such that:
$\downarrow M$ runs in polynomial time for all inputs
- $\forall x \in L: M(x)=1$
- $\forall x \notin L: M(x)=0$

Examples of algorithms in P

- Primality Testing: is a number x a prime number?
- Shortest Path in a graph: given two nodes, what is the shortest path? (for example, Dijkstra's Algorithm)
- Minimal Weighted Matching: Given n jobs on n machines with cost matrix $c_{i j}$, how do we allocate jobs? Solvable as an integer program.
- Pattern Matching: Asking, is a given pattern present in the data? The runtime depends on the data structure and pattern, but broad classes are solvable (e.g. graphs)

Non-Determinism

- A Non-Deterministic Turing machine is like a Turing Machine, except δ can go to multiple states for the same input.
- When a choice of transition is given, the Non-Deterministic Turing Machine "takes them all simultaneously'.
- The machine accepts if any of the paths accept.

Non-Deterministic Polynomial Time: NP

- A language $L \in N P$ if there exists a Non-Deterministic Turing machine M such that:
- M runs in Polynomial Time for all inputs
- $\forall x \in L: M(x)=1$
- $\forall x \notin L: M(x)=0$

Examples of algorithms in NP

- Travelling salesman problem: Given a distance matrix between n cities, is there a route between them all with total distance less than D ?
- Bin packing: Can you place n items into as few fixed-size bins as possible?
- Boolean satisfiability: Is a set of boolean logic statements true?
- Integer factorisation: Given a number x, what are its primes?

Data science consequences

- Having an algorithm is the easiest way to prove that f is in a complexity class.
- It is hard to prove that a problem is not in P!
- Many exact problems seem to be NP.
- We can sometimes do very well with an approximate algorithm in P. Examples:
> Travelling salesman: exactly solved for Euclidean distances, Christofides and Serdyukov's approximation using minimum weight perfect matching
> Bin packing. .
- Quantifying approximation error is therefore very important!

Bin packing problem

Bin packing

$|\operatorname{Bin}|=1$ and there are an unlimited number of bins. . .

Bin packing: next fit

Next fit
\downarrow

If item i fits into bin j : pack it; i++; else $\mathrm{j}^{\mathrm{+}+\text {; }}$

Bin packing: next fit

Next fit

Next fit runs in $O(n)$ time but how good is it?

- Let fill(i) be the sum of item sizes in bin i

$$
\text { and } b \text { the number of non-empty bins (using Next fit) }
$$

- Observe that fill $(2 i-1)+$ fill $(2 i)>1$ (for $1 \leq 2 i \leq b)$

$$
\text { so }\lfloor b / 2\rfloor<\sum_{1 \leq 2 i \leq b} \text { fill }(2 i-1)+\text { fill }(2 i) \leq I \leq \text { Opt }
$$

Next fit is an 2-approximation for bin packing which runs in linear time CS 301 Approximation Algorithms

Bin packing: first fit decreasing

First fit decreasing (FFD)

Step 1: Sort the items into non-increasing order

Bin packing: first fit decreasing

First fit decreasing (FFD)

- Consider bin $j=\left\lceil\frac{2 b}{3}\right\rceil$ (FFD uses b bins on this instance)

Case 2: $\operatorname{Bin} j$ contains only items of size $\leq 1 / 2$

$$
\begin{aligned}
& \text { As }\lceil 2 k / 3\rceil-1<I \\
& \quad \text { we have that }\lceil 2 k / 3\rceil-1 \leq 2 k / 3 \leq \mathrm{Opt}
\end{aligned}
$$

- So FFD is a $3 / 2$-approximation for bin packing

Addendum

- Complexity classes are not everything!
- Some examples of algorithms in P^{4} :
- Max-Bisection is approximable to within a factor of 0.8776 in around $O\left(n^{10^{100}}\right)$ time
- Energy-driven linkage unfolding algorithm is at most $117607251220365312000 n^{79}\left(l_{\max } / d_{\min }\left(\Theta_{0}\right)\right)^{26}$
- The classic "picture dropping problem" for how to wrap string such that it that will drop when one nail is removed, with n nails, can be solved in $O\left(n^{43737}\right)$
- Approximate algorithms (accurate to within $(1+\epsilon)$ often scale badly, e.g. $O\left(n^{1 / \epsilon}\right)$

Wrapup

- Complexity classes are important
- They apply to space, time, communication, memory
- Often we require approximate algorithms:
- with better complexity
- and quantifiable peformance degradation
- However, empirical performance does not always match asymptotic complexity

References

- References:
- Cormen et al 2010 Introduction to Algorithms
- Toniann Pitassi Lecture on Communication Complexity: Applications and New Directions
- Raznorov 2015 Communication Complexity Lecture
- Arora and Barak Computational Complexity: A Modern Approach
- One of few places to give space complexity much time (its always the poor cousin)

[^0]: ${ }^{1}$ Cormen et al 2010 Introduction to Algorithms

[^1]: ${ }^{2}$ According to Arora and Barak Computational Complexity: A Modern Approach. Hopcroft and Ullman Introduction to Automata Theory, Languages, and Computation use a 7-tuple.

