
Topic Models and Latent Dirichlet Allocation

Daniel Lawson — University of Bristol

Lecture 08.2 (v2.0.1)

Signposting

I This block is about modelling Languages, containing:
I Part 1: The ‘Bag of Words’ model,
I Part 2: Latent Dirichlet Allocation.

Bag-of-words model

I The bag-of-words model is the simplest tool for Natural
Language Processing. It takes a trivial form:
I A vocabulary is created, consisting of the set of all words in all

considered documents.
I Each document is represented as a feature vector by

counting the number of occurrences of each term (word).
I Typically, documents are sparse as most words do not appear in

most documents.

Notation

I Terms are indexed t = 1 . . . T
I Documents are indexed d = 1 . . . D
I A document Xd is a vector of term counts (sparsely stored)
I The Corpus C = {Xd}Dd=1 is the set of all considered

documents, and therefore contains all T terms

Python Bag-of-words

import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
count = CountVectorizer()
docs = np.array([
'The sun is shining',
'The weather is sweet',
'The sun is shining and the weather is sweet'
])
bag = count.fit_transform(docs)

I See Python Machine Learning1.

1Stevens, Kegelmeyer, Andrzejewsk and Buttler Exploring Topic Coherence
over many models and many topics

https://www.aclweb.org/anthology/D/D12/D12-1087.pdf
https://www.aclweb.org/anthology/D/D12/D12-1087.pdf

Python Bag-of-words

>>> print(count.vocabulary_)
{'sweet': 4, 'shining': 2, 'weather': 6,
'and': 0, 'the': 5, 'is': 1, 'sun': 3}
>>> print(bag.toarray())
[[0 1 1 1 0 1 0]
[0 1 0 0 1 1 1]
[1 2 1 1 1 2 1]]

Word importance

I A popular measure of word relevancy is term
frequency-inverse document frequency (tf-idf).

I tf-idf takes a very simple form:

tf − idf(t, d) = tf(t, d)× idf(t, d)

I Where the term frequency tf(t, d) = Xd(t)/
∑T

t=1Xd(t) is the
frequency of term t in document d.

I The (log) inverse document frequency is:

idf = log
(

D

1 + nd(t)

)
= − log

(1 + nd(t)
D

)
I Where n is the total number of documents,
I nd(t) =

∑D
d=1 I(Xd(t) > 0) is the number of documents d

that contain the term t.
I The 1 is a smoothing term. . . (see Bayes)

Interpreting tf-idf

I Clearly this is arbitrary, though based on a reasonable
principle. . .

I TF accounts for the frequency within the document
I IDF assumes terms are independent, and ignores frequency:

I The co-occurrence of two terms is the product of their
probabilities, or the sum of their log probabilities

I This ignores term frequency within each document
I This is therefore approximating

Pr((t|d) ∧ (t ∈ d)) log(Pr(t ∈ d))
I This can be rearranged into Pr(d|t) ∝ Pr(d, t),
I And resembles the elements of a Mutual Information

measure:

(T,D) =
∑

t

∑
d

p(t, d) log
(
p(t, d)
p(t)p(d)

)
.

Interpreting tf-idf
I The resemblance is meaningful, but not rigorous2

I Some hand-waving is required to get there:
I tf = Pr(t|d) = Xd(t)/

∑T
t=1 Xd(t) ≈ 1+nd(t)

D i.e. knowing the
term tells you it is from one of the documents containing that
term,

I idf = − log(Pr(d|t))
I Pr(d) = 1/D

I The mutual information form can be reached by rearranging
these sorts of statements

I It is not precise because different approximations are used in
different elements

I And Mutual Information is a property of distributions, not of
elements of that distribution.

I Very many other interpretations exist!
I These hacks can justified on robustness grounds.

2Stephen Robinson, Microsoft Research Understanding Inverse Document
Frequency: On theoretical arguments for IDF

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.7340&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.7340&rep=rep1&type=pdf

Python tf-idf

from sklearn.feature_extraction.text import TfidfTransformer
tfidf = TfidfTransformer(use_idf=True,

norm='l2',
smooth_idf=True)

np.set_printoptions(precision=2)
print(tfidf.fit_transform(count.fit_transform(docs)).toarray())
[[0. 0.43 0.56 0.56 0. 0.43 0.]
[0. 0.43 0. 0. 0.56 0.43 0.56]
[0.4 0.48 0.31 0.31 0.31 0.48 0.31]]

Alternative transforms

I tf-idf is arbitrary. It induces a useful feature space for
comparisons. It ignores word usefulness.

I Alternatives include:
I Cosine Similarity
I Any other transformation, especially those with

information-theory interpretations
I feature extraction methods to understand classification

importance
I Word2Vec: Implemented in the package gensim.
I Doc2Vec: Another option.
I Modelling, e.g. Latent Dirichlet Allocation.

N-grams

I The previous analysis treats words as a “unit of inference”.
I It is instead possible to consider N-grams, that is, all

occurrences of (up-to) N characters.
I Given enough data, it is possible to learn the words.
I This is valuable for modelling, e.g.:

I Foreign languages: all unicode characters can be handled,
I Non-languages such as computer code or byte strings, such as

seen in binary executables,
I Arbitrary factor sequences.

I They are typically stored efficiently (see hashing later in the
course).

I The penalty is that:
I larger corpora are required to obtain the same classification

performance,
I the feature space is dramatically larger,
I word standardization cannot be used (see 7.2)

Beyond the bag of words

I The Bag-of-words is a vector representation of a set of
documents.
I i.e. a feature space embedding.

I But how can we use this? How do we compare documents?
I We could perform dimensionality reduction via PCA,
I Distance metrics such as Cosine Similarity,
I etc.

I Or we can model the similarity. The most successful approach
for this is Latent Dirichlet Allocation (LDA).

Modelling a Bag Of Words using Latent Dirichlet
Allocation

I Each document is modelled as a mixture of topics,
I Each topic is modelled as a distribution over words,
I Some Bayesian modelling magic allows the documents to be a

theoretically infinite mixture (see 04.1 - Nonparametrics).

LDA Motivation - The setup

LDA Motivation - Data in Practice

LDA Motivation - Example

LDA Definition

I The overall word distribution is η, an N -vector.
I The overall topic distribution is α, a K-vector.
I Each topic k is described by a word frequency vector
βk ∼ Dirichlet(η).

I Each document d is described by a topic frequency vector
θd ∼ Dirichlet(α).

I When generating word i from document d, we generate a
topic zdi ∼ Multinomial(θd).

I And then generate a word wdi ∼ Multinomial(βd).

LDA Probabilistic Graphical Model

This is plate notation for Bayesian Graphical Models.

LDA properties

I Because it is a generative model, we can can ask it to simulate
documents.

I These approaches are embarrassing:
I in the sense that if you simulate from the model, it generates

garbage,
I because words are independent.

I They should be thought of instead as keyword generators.
I This is extremely useful for a variety of text categorisation

tasks.
I It can operate:

I supervised (where we insist that some documents have
pre-defined topic distributions) or

I unsupervised (where nothing is assumed apriori about topics).

LDA implementation

I LDA implementations3 use a conjugate model (Multinomial
distribution is conjugate to the Dirichlet prior).

I It uses Variational Bayes to write the problem as an
optimisation problem.

3Blei, David M., Andrew Y. Ng, and Michael I. Jordan. “Latent dirichlet
allocation.” Journal of machine Learning research 3.Jan (2003): 993-1022.

Further notes on LDA

I LDA models a matrix Y = AX, where:
I Y is the data (N rows containing L word frequencies),
I X are the topics (K rows containing L word frequencies) and
I A is a mixture, (N rows containing K topics)

I This is a common problem called matrix decomposition.
I What makes LDA special is that words are sparse, meaning

that there are many words but most words don’t appear in
most documents.

I You can run LDA on any problem of this type, but there are
other approaches for dense data. (We return to sparsity later.)

Extensions

I We will not cover them, but if you work with document models
you may want a more realistic model.

I Predictive text uses Markov Chains to predict p(t(i)|d, t(i− 1)).
I Neural Networks generate arbitrary correlation structure, e.g.

I Mathgen generates random papers,
I Topic-RNN infers a topic model using a Neural Network.

https://thatsmathematics.com/mathgen/
https://github.com/dangitstam/topic-rnn

Quantifying solutions
I There are many ways to quantify how good a particular LDA

model is. The most popular are:
I Perplexity: the perplexity is 2−H(D) where
H(D) =

∑T
t=1 log(p(t|θd))

I p(t|θd) =
∑V

v=1 θd(v)p(t|v) uses the model-learned topics V
for the (held out!) document d with topic distribution θd.

I It is the entropy of term t (normally reported as the average
per-word).

I Perplexity is low (better) when each word appears in only one
topic.

I Perplexity is high when words are distributed across topics.
I Coherence: a measure of how often pairs of words appear

together. there are two ways to examine this:
I intrinsic coherence: called u_mass, this compares within a

corpus.
I extrinsic coherence: called c_v, this compares to some

standard reference documents.
I Neither is particularly consistent with human judgement4.

4Chang, Jonathan, Jordan Boyd-Graber, Sean Gerrish, Chong Wang and
David M. Blei. 2009. Reading Tea Leaves: How Humans Interpret Topic Models.
NIPS.

http://umiacs.umd.edu/~jbg/docs/nips2009-rtl.pdf

Coherence

I The coherence is based on the score 5 (defined next):

Coherence(V) =
∑

(ti,tj)∈V

score(ti, tj)

I Where V is a topic, and ti, tj are word pairs.
I In both cases we use a regulariser ε.

I ε = 1 is natural but not obligatory.

5Stevens, Kegelmeyer, Andrzejewsk and Buttler Exploring Topic Coherence
over many models and many topics

https://www.aclweb.org/anthology/D/D12/D12-1087.pdf
https://www.aclweb.org/anthology/D/D12/D12-1087.pdf

intrinsic coherence

I Using the score function:

u_mass(vi, vj) = log
(
p(vi, vj , ε)
p(vi)p(vj)

)

I i.e. we compare the probability that the words co-occur in a
document with their relative frequencies.

I ε assigns non-zero weight to word pairs that do not occur
together in a document.

Extrinsic coherence

I Using the score function:

c_v(vi, vj) = log
(
D(vi, vj , ε)
D(vj)

)

I where D counts documents that contain the word(s);
I i.e. we compare the frequency in which words co-occur in an

external dataset, compared to their external frequency.

Reflection

I What is a bag of words, conceptually?
I What are the advantages of LDA over Bag of words?
I And vice-versa?
I Could you use SVD on a bag of words?
I Why would we use either, when empirical accuracy of

neural-network approaches is higher?

References

I Bag-of-words: p259 Python Machine Learning (Raschka &
Mirjalili, 2nd ed 2017)

I Topic Modeling and Latent Dirichlet Allocation: An Overview
(Weifeng Li, Sagar Samtani and Hsinchun Chen)

I Stephen Robinson, Microsoft Research Understanding Inverse
Document Frequency: On theoretical arguments for IDF

I Topic Modeling and Latent Dirichlet Allocation: An Overview
(Weifeng Li, Sagar Samtani and Hsinchun Chen)

I Blei, David M., Andrew Y. Ng, and Michael I. Jordan. “Latent
dirichlet allocation”, Journal of machine Learning research
3.Jan (2003): 993-1022.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.7340&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.7340&rep=rep1&type=pdf
https://ai.arizona.edu/sites/ai/files/MIS611D/lda.pptx
https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

