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In anticipation



Signposting

I Bayesian methodology is a huge and important area
I This is to give the background for:

I Bayes Rule
I Signposting Bayesian tools
I Understanding Latent Dirichlet Allocation
I Regularisation



Questions

I Can we still do inference when the posterior is intractable?
I Can we justify regularization?
I Are Bayesian methods slower than frequentist methods?
I Do we need to believe our prior?



A brief aside into Bayesian Modelling

I Bayesian Models are generative, that is, you can simulate
data from them.

I They consist of:
I a prior Pr(θ), that is conceptualised as either a model, or as

beliefs,
I and the likelihood Pr(x|θ), that depends on the data.

I The task is to integrate over the prior, to find the posterior
probability using Bayes’ theorem:

Pr(θ|x) = Pr(x|θ) Pr(θ)
Pr(x)

I In general Pr(x) is hard to evaluate but there are methods to
avoid doing this.



Example of Bayes Theorem

I One important application of Bayes’ theorem is False
discovery.
I Imagine that we made a Bad-Guy-Detector (TM) which has a

99% chance of seeing a malicious attack if present (θ = 1). . .
I But a 0.01% chance of declaring an attack when it isn’t (θ = 0).
I Let p be the true frequency of malicious attacks.
I If our BGD activates (x = 1), what is the probability of a true

attack?
I Probability of the data: Pr(x = 1) = 0.99p+ 0.0001(1− p)
I Probability of an attack: Pr(θ = 1|x = 1) = 0.99p/Pr(x = 1)
I If p = 0.001 then Pr(θ = 1|x = 1) ≈ 0.9
I If p = 0.0001 then Pr(θ = 1|x = 1) ≈ 0.5
I If p = 0.00001 then Pr(θ = 1|x = 1) ≈ 0.09
I If p = 0.000001 then Pr(θ = 1|x = 1) ≈ 0.001



Etymology of Bayes: Conjugacy and tractability

I Bayesian Inference techniques can be used to integrate out
model parameters:

I A conjugate model allows parameters to be integrated out
analytically: i.e. you can compute Pr(x) and therefore Pr(θ|x)

I Monte-Carlo methods allow sampling of posterior
parameters Pr(θ|x) conditional on the data without ever
evaluating Pr(x)

I Some models are doubly intractable1 meaning that you
cannot compute Pr(x|θ) and they cannot be sampled.
I For example, Markov Random Fields.
I Special methods are needed for them, for example,

Approximate Bayesian Computation

1Murray, Ghahramani, and MacKay. “MCMC for doubly-intractable
distributions.” arXiv preprint arXiv:1206.6848 (2012).



Conjugate models
I Conjugate models take the form of a known distribution for

the Prior, that can be updated through observations to the
same distribution but with new parameters.

I Updating conjugate models with new data is straightforward:
we can do it online by visiting each datapoint only once.

I We can also form a low-dimensional summary that captures
everything about an observation.

I This means we can interpret the prior in terms of pseudo
observations:
I either data we have seen already,
I or data we pretend to have seen in order to specify a prior

distribution.
I The set of possible conjugate models is limited, though they

can often be used as a part of a larger model.
I For example, we might have a set of conjugate models to

summarise several different data sources on a stream, which we
then combine into a full, more costly model containing only a
few non-conjugate parameters.



Conjugate model example

I Example: The Beta-Bernoulli model for binary outcomes.
I In the Bernoulli model p(x|p) we flip a (biased) coin x which is

heads (x = 1) with some unknown probability p.
I If we parameterise the prior p(p) = Beta(α, β), with

p̂ = α/(α+ β),
I then after n observations p(p|{x}) = Beta(α′, β′) =

Beta(α+
∑n

i=1 xi, β + (n−
∑n

i=1 xi)),
I i.e. α was our prior number of successes (heads) and β our prior

number of failures (tails).
I All discrete distributions with conjugate priors have this

interpretation!
I Continuous distributions also contain a concept of the number

of observations used to form the prior estimate.
I There is a super useful list of conjugate priors and

interpretations on the Conjugate Prior Wikipedia page!

https://en.wikipedia.org/wiki/Conjugate_prior


Markov Chain Monte Carlo (MCMC)
I MCMC2 allows sampling from a posterior when we can

evaluate the likelihood and the prior at any parameter value,
but not integrate it.

I It performs a search of parameter space, comparing the
posterior at the current point to the posterior at a proposed
point, taking into account the probability of moving between
the points in either direction.

I (Somewhat surprisingly) the set of samples taken over many
iterations resembles a random sample from the posterior.

I This can be used to make predictions, estimate parameters, etc,
by averaging over the samples.

I It is relatively costly - the number of likelihood evaluations
required to obtain convergence is hard to predict.

I It is often a relatively good search algorithm for hard
posteriors! Though careful choice of proposals is then needed.

2e.g. Gamerman and Hedibert. Markov chain Monte Carlo: stochastic
simulation for Bayesian inference.



Tools for Bayesian Modelling using MCMC

I MCMC is very popular because it is straightforward to
implement many models using it.

I Some important tools for Bayesian Inference allow models to
be specified, an automatically do the inference for you using
MCMC:
I OpenBUGS (http://openbugs.net/w/FrontPage)
I JAGS (http://mcmc-jags.sourceforge.net/)
I STAN (http://mc-stan.org/)

I STAN is the current darling because it uses a clever method to
sample, called the “no U-turn sampler” (NUTS) which searches
parameter space with Hamiltonian Monte Carlo, a method
that gives the search “momentum”.



Sequential Monte Carlo (SMC) for filtering problems

I Filters are a class of model that take a sample of parameters
and move them (through some observed space such as time) to
track a changing distribution, for example, estimates of where
an object is over time.

I Hidden Markov Models (HMMs) do this analytically for
discrete parameter spaces, where the observation is a random
variable depending on the true state of a system.

I The Kalman Filter is famous as it can be solved analytically by
tracking a Normal distribution estimate of the location.

I Sequential Monte Carlo is a tool for implementing a wide range
of Bayesian models.

I It was pioneered3 and been integrated into MCMC4 in Bristol.

3Doucet, Godsill, and Andrieu. “On sequential Monte Carlo sampling
methods for Bayesian filtering.” Statistics and computing 10.3 (2000): 197-208.

4Andrieu, Doucet, and Holenstein Particle Markov chain Monte Carlo
methods

https://www.stats.ox.ac.uk/~doucet/andrieu_doucet_holenstein_PMCMC.pdf
https://www.stats.ox.ac.uk/~doucet/andrieu_doucet_holenstein_PMCMC.pdf


Approximate Bayesian Computation (ABC)

I ABC5 is an approach to allow inference when the Likelihood
cannot be evaluated, either because it is too costly, or the
model is not described in terms of probabilities.

I It works by:
I Simulating data from a model,
I Creating a set of summary statistics from the data,
I Comparing the summary statistics of the simulated data to the

real data,
I Accepting parameters that generate sufficiently close data.

I It can be sampled using a simple rejection algorithm, MCMC,
or SMC.

I It is a hot topic to use Neural Networks to make ABC summary
statistics.

I It is relatively computationally costly unless the simulation is
fast.

5Beaumont, Zhang, and Balding. “Approximate Bayesian computation in
population genetics.” Genetics 162.4 (2002): 2025-2035.



Bayesian Modelling in Machine Learning

I Machine Learning techniques need to be fast, so concentrate
on conjugate models, or approximations that are the nearest
conjugate model.
I Variational methods6 are extremely important for this.
I The integration is turned into an optimisation problem,

searching for the parameters that best approximate the whole
posterior distribution.

6Blei and Jordan. “Variational inference for Dirichlet process mixtures.”
Bayesian analysis 1.1 (2006): 121-143.



Variational methods insight

I Seeking the distribution Q that best approximates the true
distribution P , measured in “KL-Divergence”7.

7http://blog.evjang.com/2016/08/variational-bayes.html



Motivating Regularisation and Smoothing
I Taking the maximum likelihood estimate can sometimes lead

to problems, for example, if from n trials we observe zero
successes, we estimate p̂ = 0 and hence place zero probability
on observing a head in the future!

I Instead, it is good practice to assume that the whole sample
space is plausible for future values, i.e. assume that our prior
contains observations from every outcome.
I Common to take 1 pseudo observation from every category, or 1

pseudo observation from the null, etc
I Also reasonable to take “a small number” (0.01 often used) to

provide non-zero mass to “unobserved events”
I In practice, this allows regularised frequentist inference by

taking the maximum aposteriori (MAP) estimate of a Bayesian
model

I Conjugacy is only required if we want an analytical solution.
MAP estimates are very useful elsewhere, provided stable
estimators exist.



Why regularise?

I The above interpretation makes it clear that Regularisation will
change our estimate:
I The first time a “new” type of observation is made, such as a

new category or cluster;
I When the number of pseudo observations is not small compared

to the amount of data.
I It is therefore essential when:

I Making predictive distributions allowing for the possibility
that we have not yet learned everything,

I The total number of training observations is “small”.
I Regularisation is essential when p > n where we have more

parameters than data and therefore no power to estimate them
all.



Regularisation models for regression

I In regression we minimise (y−Xβ)T (y−Xβ) with respect to
β.

I Regression is typically regularised with either:
I Ridge penalisation, by adding λr(β − c)T (β − c) to penalise

towards c using second moments,
I Lasso penalisation, by adding λ1‖β − c‖ to penalise towards c

using first moments,
I ElasticNet penalisation, which combines the above.

I These have direct interpretations in terms of a Bayesian
model.
I Ridge regression is assuming prior observations at c (with count

a function of λr)
I Lasso regression assumes that the prior is a Laplace distribution

instead



Comments on regularisation
I Simple regularisation models can be represented as

pseudo-observations. This is conceptually and practically
convenient.

I Others cannot. They may enjoy other advantages, for example:
I Coming from a justifiable Bayesian prior. For example, a

hierarchical model assumes that there is a grand mean from
which local clusters are sampled. Clusters are penalised towards
the mean above them in the hierarchy.

I Providing desirable consequences. For example, Lasso
regression can set some coefficients to exactly zero, which is a
valuable complexity reduction.

I Regularisation is not Bayesian modelling, even though it
typically has an interpretation as a prior:
I In Bayesian inference, we integrate over the prior to get a

posterior distribution.
I In MAP estimation and regularisation, we take the a point

estimate.
I Variational inference attempts to integrate over the prior, by

finding the closest fitting integrable distribution.



Reflection

I Are Bayesian approaches inherently slow?
I When might MAP estimation and full Bayesian inference

produce different predictions?
I How have we encountered regularisation previously?

I How does it relate to non-parametric models?
I How does it relate to Random Forests, decision trees and other

flexible predictors?
I When would we regularise vs cross-validate?
I Keep looking for regularisation as we move through the course,

especially in flexible machine learning systems such as neural
networks.
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