Neural Network Architecture and Practicalities

Daniel Lawson — University of Bristol

Lecture 07.2 (v2.1.0)

Questions

» What are the most important types of neural net?
» What role does architecture have?

Some types of neural network

Feed-forward
Convolutional
Recurrent
Recursive
Auto-encoders

VVyVVYYVYY

Feed forward neural network

» This is the Neural Network that you know. It is acyclic.

Input Hidden Output
Layer Layers Layer

Feed forward neural network

» The feed forward neural network is a universal approximator
» It can therefore be used as a component of a NN to compute
any function y = f(x)
» This can include:
» Likelihoods, so making probabilistic predictions
» Derivatives, (which are evaluated in the feed-forward step!)
» And anything else we can imagine.
» Learning f can be complex, though many papers provide their
network.
» Although all functions are approximable, not all behave nicely.

» For example, densities seem hard to approximate whilst
cumulative distribution functions behave better?.

Chilinski and Silva

https://arxiv.org/abs/1811.00974

Convolutional neural network

» This is a feed-forward network that has carefully designed layers
for constructing known features, such as local averaging.

. Fully
Input Convolutional connected Output
Layer Layers Layer
Layers

S

» Choosing CNN architecture is choosing a model
» It should reflect known structure, e.g. locality, exchangeability,
etc

Convolutional neural network

it C3: 1. maps 16@10x10
lo ature maps. 5 1 x5
=2 6@28x28 A

S4:1
&1 r- ™ '™ roayer QUTPUT
r 84
'
I— =

Full connection

» CNNs are a core part of image processing?
» They scan an image, constructing features

» Different convolutions can create different features, including:

> Larger objects
> Edges
» Presence/absence of either via max-pooling

2Albawi, Mohammed and Al-Zawi

https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE
https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE

Recurrent Neural Network

» This is a network containing cycles, which allows for “memory”
and potentially chaotic behavior.

Recurrent
Hidden
Layers

Input
Layer

» Training is hard; uses a special algorithm: “causal recursive
backpropagation” which mitigates the disconnect between error
and weights in standard algorithms. . .

Output
Layer

Recurrent Neural Network for Point Processes

ik
=

J

RNN

Cumulative Hazard Function Network

—— positive weigh

cumulative
hazard
function

Hawkes2

©O

» An RNN acts as a “memory” for an arbitrary history3

» A CNN acts as a universal approximator to the CDF

» This is translated into the Likelihood of the data by
back-propagation differentiation

30mi, Ueda and Aihara

https://arxiv.org/pdf/1905.09690.pdf
https://arxiv.org/pdf/1905.09690.pdf

Recurrent Neural Network

» Recursive Neural Networks also exist, these allow cycles to
previous layers. . .
» Alphago was an RNN. Alphago zero is better and used a
“two-headed” architecture:
» A value network that attributes values to board positions

» A policy network that links board positions to actions that
realise them

> It is essentially making a giant decision tree, which is pruned to
a manageable set by assigning values to states without seeing
them through to outcomes.

» This is all beyond the scope of the course, but you might wish
to examine how these work

Auto encoders

Input Hidden
Layer Layer

Output

Encoding oups

Layer

e ok

Decoder

» Auto encoders provide a low-dimensional representation of the
data

» They consist of separable parts, the encoder and the decoder

» They can be used for de-noising

» They are particularly useful when data are limited

LLMs,

\4

vVvvyyvVyy

Foundation Models

A Large Language Model (LLM) is the basis of modern
Chatbots
They are essentially very large transformers
Trained on very large datasets
To predict the next ‘token’
For a very long time!
Attention is parallelizable learning, e.g. the fat cat sat on
the mat
» learns (the fat) — cat and (the fat cat) — sat
simultaneously
» solves the vanishing gradient problem, keeping context over
long distances

Foundation models are trained on more data types

Transformers

Nx Encoder

=
8
-3
&
=2
=
]

]
&

ssuippaquiy

Output

doi:10.48550/arXiv.2303.12914

Attention

<PBd> m—eeeeeeeeeee <pEO>
<SO3> <S03>

uoluido uoluido
AW e AW
ul ul
BUISSIW = BUISS|W
ale ale
am am
jeym - JEYM
S| S|
siyy sy
b oy v e o 1|
oq aq
pinoys *pInoys
uopeo)dde = yopje0l dde
Sy S|
inq inq
yoapad joapad
aq

Cited by

by A Vaswani

(2017)

Attention is all you need’

137673

From

Finetuning

» In practice, good neural networks are very large

» Many problems contain very similar structure

» In practice you therefore want to download someone elses’
model

» You then finetune it to your task

P Best practice learns a ‘low rank’ approximation, e.g. LoRA

()

https://github.com/microsoft/LoRA

Summary

» Neural Networks are possibly the most important development
in Al

» They provide universal approximation, allowing non-parametric
approaches to wide problem sets

» Network design is critical, and still very much an art

» If you understand the building blocks just a little, you can
access others' networks and potentially tweak them

Implementing Neural Networks

» Implementations are best though of in two classes.
» Simple networks have a restricted architecture and can be
deployed “out of the box” as a Machine Learning tool.
» Examples include ,
packages, etc
» Often either shallow or very simple hidden layer structure
» Deep networks require a complex specification of architecture
and significant computational optimisation, so are very large
(and mercifully, open source) endeavours
» This is the focus here.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf
https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf

Deep NN Implementations

» There are two main libraries for deep neural networks:
» TensorFlow, developed by Google Brain.

»> Well documented

» Easier to use

» Industry standard

> visualisation is useful

» PyTorch, developed by Facebook.
» Newer, less support
» Dynamical coding paradigm: graph can remodel in the light of
the data
» Debugging is easier? As the code is compiled at runtime, like
native python

https://www.tensorflow.org/tensorboard

Using implementations

> is a low-level language. You can interact with it
through abstraction layers which allows very simple
implementations.

> is very widely used and makes accessing TensorFlow very
easy.
> is already conceptually a “high level” implementation.
> can use various backends (implementations):
>
>
> is a pure python library for a wide class of array

computation, not just Neural Networks. It was forked into

> , but this is no longer in active
development.

> See

https://www.tensorflow.org
https://keras.io/why-use-keras/
https://pytorch.org/
https://keras.io/
https://www.tensorflow.org/
https://mxnet.apache.org
https://pypi.org/project/Theano/
https://github.com/pymc-devs/aesara
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://medium.com/implodinggradients/tensorflow-or-keras-which-one-should-i-learn-5dd7fa3f9ca0

Practical advice

» Explore recommendations. e.g.

> As a starting point:

>
| 2
>
>

>

» Don

Use the “adam” optimizer

Use a ReLU activation function

Remember not to use an activation function for the output layer
(except for classification, when use a sigmoid)

Add bias to every layer (shouldn’'t have to worry about this in
keras)

Whiten (normalize) your input data (we'll see this in the
workshop)

't believe me. Get other opinions, and try things yourself.

https://pcc.cs.byu.edu/2017/10/02/practical-advice-for-building-deep-neural-networks/
https://pcc.cs.byu.edu/2017/10/02/practical-advice-for-building-deep-neural-networks/

Debugging

\{

vVvyvyYVyy

Check the input data. ..
For many tasks:
» OVERFIT. “Accuracy should be essentially 100% or 99.99%".
If it isn't, the network isn't flexible enough, or learning correctly.
Change the learning rate
Decrease mini-batch size
Remove batch normalization (this exposes NA values)
Reconsider the architecture
PLOT your results! training loss by epoch is a natural plot

Additional notes on learning

» Learning a Neural Network is still non-trivial. Start with this
advice*
» Second order methods are often used later in the fitting
process, closer to the global optima.
» Hyperparameters matter. Some optimisers, e.g. Adam, can
tune them semi-automatically. Standard ones require manual
tuning for e.g. step size.

» There is nothing here to prevent overfitting!

“Bengio 2012

http://arxiv.org/pdf/1206.5533.pdf
http://arxiv.org/pdf/1206.5533.pdf

Learning rates

High Bias

Low Variance

Prediction Error

Underfitting
R —

/

Training Sample

Bias trade-off

Test Sample

Qverfitting
—_—

Low Bias

High Variance

Low

Model Complexity

» not specific to neural networks

High

» But particularly important due to NN flexibility

Hints on overfitting

» Many optimizers include options for these tricks and more:
» Penalize large weights:
> Ridge (L2) penalisation: L = Lo+ A>_
» Lasso (L1) penalisation: L = Lo+ A
» Dropout:

Wi;|?
Wil

i |
a4l

» New hyperparameter py, for layer k: the dropout rate
» Each learning step, with independently randomly set all outputs
from a neuron to 0

» Early stopping:
> retain a test dataset (from the training dataset)

» evaluate performance on the held-out set
» stop when this no longer increases

Further reading

> and

\4

» A performance focussed comparison:

\4

https://keras.io/why-use-keras/
https://pytorch.org/
https://medium.com/implodinggradients/tensorflow-or-keras-which-one-should-i-learn-5dd7fa3f9ca0
https://medium.com/syncedreview/tensorflow-pytorch-or-mxnet-a-comprehensive-evaluation-on-nlp-cv-tasks-with-titan-rtx-cdf816fc3935
https://medium.com/syncedreview/tensorflow-pytorch-or-mxnet-a-comprehensive-evaluation-on-nlp-cv-tasks-with-titan-rtx-cdf816fc3935
https://www.tensorflow.org/tensorboard
https://brilliant.org/wiki/backpropagation/
https://pcc.cs.byu.edu/2017/10/02/practical-advice-for-building-deep-neural-networks/

