Neural Network Architecture and Practicalities

Daniel Lawson — University of Bristol

Lecture 07.2 (v2.1.0)

Questions

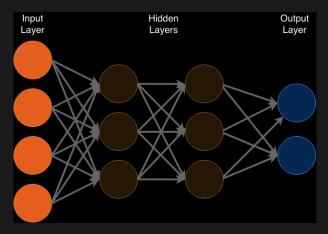
- ▶ What are the most important types of neural net?
- What role does architecture have?

Some types of neural network

Feed-forward
Convolutional
Recurrent
Recursive
Auto-encoders
...

Feed forward neural network

▶ This is the Neural Network that you know. It is acyclic.



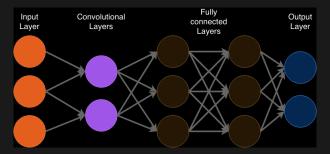
Feed forward neural network

- The feed forward neural network is a universal approximator
- It can therefore be used as a component of a NN to compute any function y = f(x)
- This can include:
 - Likelihoods, so making probabilistic predictions
 - Derivatives, (which are evaluated in the feed-forward step!)
 - And anything else we can imagine.
- Learning f can be complex, though many papers provide their network.
- Although all functions are approximable, not all behave nicely.
 - For example, densities seem hard to approximate whilst cumulative distribution functions behave better¹.

¹Chilinski and Silva Neural Likelihoods via Cumulative Distribution Functions

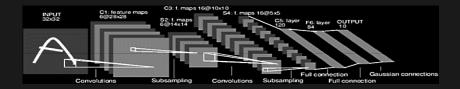
Convolutional neural network

This is a feed-forward network that has carefully designed layers for constructing known features, such as local averaging.



Choosing CNN architecture is choosing a model
It should reflect known structure, e.g. locality, exchangeability, etc

Convolutional neural network

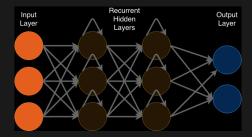


- CNNs are a core part of image processing²
- They scan an image, constructing features
- Different convolutions can create different features, including:
 - Larger objects
 - Edges
 - Presence/absence of either via max-pooling

²Albawi, Mohammed and Al-Zawi Understanding of a convolutional neural network

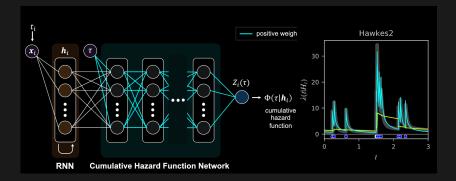
Recurrent Neural Network

This is a network containing cycles, which allows for "memory" and potentially chaotic behavior.



Training is hard; uses a special algorithm: "causal recursive backpropagation" which mitigates the disconnect between error and weights in standard algorithms...

Recurrent Neural Network for Point Processes



- An RNN acts as a "memory" for an arbitrary history³
- A CNN acts as a universal approximator to the CDF
- This is translated into the Likelihood of the data by back-propagation differentiation

³Omi, Ueda and Aihara Fully Neural Network based Model for General Temporal Point Processes

Recurrent Neural Network

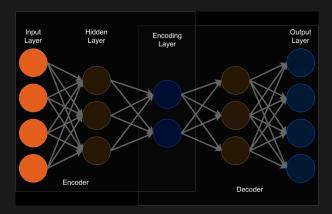
Recursive Neural Networks also exist, these allow cycles to previous layers...

 Alphago was an RNN. Alphago zero is better and used a "two-headed" architecture:

A value network that attributes values to board positions

- A policy network that links board positions to actions that realise them
- It is essentially making a giant decision tree, which is pruned to a manageable set by assigning values to states without seeing them through to outcomes.
- This is all beyond the scope of the course, but you might wish to examine how these work

Auto encoders

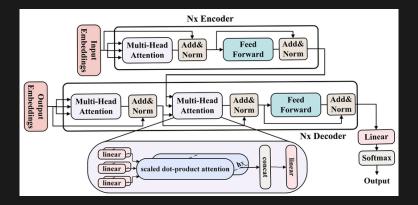


- Auto encoders provide a low-dimensional representation of the data
- They consist of separable parts, the encoder and the decoder
- They can be used for de-noising
- They are particularly useful when data are limited

LLMs, Foundation Models

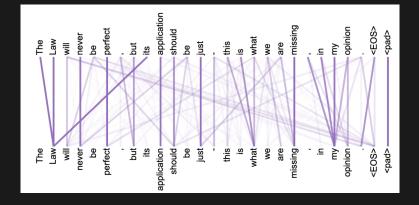
- A Large Language Model (LLM) is the basis of modern Chatbots
- They are essentially very large transformers
- Trained on very large datasets
- To predict the next 'token'
- ► For a very long time!
- Attention is parallelizable learning, e.g. the fat cat sat on the mat
 - ▶ learns (the fat) \rightarrow cat and (the fat cat) \rightarrow sat simultaneously
 - solves the vanishing gradient problem, keeping context over long distances
- Foundation models are trained on more data types

Transformers



doi:10.48550/arXiv.2303.12914

Attention



From 'Attention is all you need' (2017) by A Vaswani $\,\cdot\,$ Cited by 137673

Finetuning

- In practice, good neural networks are very large
- Many problems contain very similar structure
- In practice you therefore want to download someone elses' model
- You then finetune it to your task
- Best practice learns a 'low rank' approximation, e.g. LoRA (https://github.com/microsoft/LoRA)

Summary

- Neural Networks are possibly the most important development in AI.
- They provide universal approximation, allowing non-parametric approaches to wide problem sets
- Network design is critical, and still very much an art
- If you understand the building blocks just a little, you can access others' networks and potentially tweak them

Implementing Neural Networks

- Implementations are best though of in two classes.
- Simple networks have a restricted architecture and can be deployed "out of the box" as a Machine Learning tool.
 - Examples include sklearn.linear_model.Perceptron, R's neuralnet packages, etc
 - Often either shallow or very simple hidden layer structure
- Deep networks require a complex specification of architecture and significant computational optimisation, so are very large (and mercifully, open source) endeavours
 - This is the focus here.

Deep NN Implementations

There are two main libraries for deep neural networks:

- **TensorFlow**, developed by Google Brain.
 - Well documented
 - Easier to use
 - Industry standard
 - Tensorboard visualisation is useful
- **PyTorch**, developed by Facebook.
 - Newer, less support
 - Dynamical coding paradigm: graph can remodel in the light of the data
 - Debugging is easier? As the code is compiled at runtime, like native python

Using implementations

- Tensorflow is a low-level language. You can interact with it through abstraction layers which allows very simple implementations.
 - Keras is very widely used and makes accessing TensorFlow very easy.
 - PyTorch is already conceptually a "high level" implementation.
- Keras can use various backends (implementations):
 - TensorFlow
 - MXNet
 - Theano is a pure python library for a wide class of array computation, not just Neural Networks. It was forked into Aesara...
 - Microsoft Cognitive Toolkit, but this is no longer in active development.
- See Tensorflow or keras?

Practical advice

Explore recommendations. e.g. Practical Advice for Building Deep Neural Networks:

- As a starting point:
 - Use the "adam" optimizer
 - Use a ReLU activation function
 - Remember not to use an activation function for the output layer (except for classification, when use a sigmoid)
 - Add bias to every layer (shouldn't have to worry about this in keras)
 - Whiten (normalize) your input data (we'll see this in the workshop)

Don't believe me. Get other opinions, and try things yourself.

Debugging

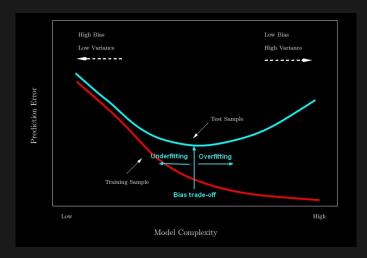
- Check the input data...
- For many tasks:
 - OVERFIT. "Accuracy should be essentially 100% or 99.99%". If it isn't, the network isn't flexible enough, or learning correctly.
- Change the learning rate
- Decrease mini-batch size
- Remove batch normalization (this exposes NA values)
- Reconsider the architecture
- PLOT your results! training loss by epoch is a natural plot

Additional notes on learning

- Learning a Neural Network is still non-trivial. Start with this advice⁴
 - Second order methods are often used later in the fitting process, closer to the global optima.
 - Hyperparameters matter. Some optimisers, e.g. Adam, can tune them semi-automatically. Standard ones require manual tuning for e.g. step size.
- There is nothing here to prevent overfitting!

⁴Bengio 2012 Practical Recommendations for Gradient-Based Training of Deep Architectures

Learning rates



- not specific to neural networks
- But particularly important due to NN flexibility

Hints on overfitting

Many optimizers include options for these tricks and more:

- Penalize large weights:
 - Ridge (L2) penalisation: $L = L_0 + \lambda \sum_{i,j} |W_{ij}|^2$
 - Lasso (L1) penalisation: $L = L_0 + \lambda \sum_{i,j}^{\infty} |W_{ij}|$

Dropout:

- New hyperparameter p_k for layer k: the dropout rate
- Each learning step, with independently randomly set all outputs from a neuron to 0

Early stopping:

- retain a test dataset (from the training dataset)
- evaluate performance on the held-out set
- stop when this no longer increases

Further reading

- ► Keras and PyTorch
- Tensorflow or keras?
- A performance focussed comparison: TensorFlow, PyTorch or MXNet?
- Tensorboard
- Brilliant.org on Backpropagation
- Practical Advice for Building Deep Neural Networks