
Neural Network Architecture and Practicalities

Daniel Lawson — University of Bristol

Lecture 07.2 (v2.1.0)

Questions

I What are the most important types of neural net?
I What role does architecture have?

Some types of neural network

I Feed-forward
I Convolutional
I Recurrent
I Recursive
I Auto-encoders
I . . .

Feed forward neural network

I This is the Neural Network that you know. It is acyclic.

Feed forward neural network

I The feed forward neural network is a universal approximator
I It can therefore be used as a component of a NN to compute

any function y = f(x)
I This can include:

I Likelihoods, so making probabilistic predictions
I Derivatives, (which are evaluated in the feed-forward step!)
I And anything else we can imagine.

I Learning f can be complex, though many papers provide their
network.

I Although all functions are approximable, not all behave nicely.
I For example, densities seem hard to approximate whilst

cumulative distribution functions behave better1.

1Chilinski and Silva Neural Likelihoods via Cumulative Distribution Functions

https://arxiv.org/abs/1811.00974

Convolutional neural network

I This is a feed-forward network that has carefully designed layers
for constructing known features, such as local averaging.

I Choosing CNN architecture is choosing a model
I It should reflect known structure, e.g. locality, exchangeability,

etc

Convolutional neural network

I CNNs are a core part of image processing2

I They scan an image, constructing features
I Different convolutions can create different features, including:

I Larger objects
I Edges
I Presence/absence of either via max-pooling

2Albawi, Mohammed and Al-Zawi Understanding of a convolutional neural
network

https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE
https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE

Recurrent Neural Network

I This is a network containing cycles, which allows for “memory”
and potentially chaotic behavior.

I Training is hard; uses a special algorithm: “causal recursive
backpropagation” which mitigates the disconnect between error
and weights in standard algorithms. . .

Recurrent Neural Network for Point Processes

I An RNN acts as a “memory” for an arbitrary history3

I A CNN acts as a universal approximator to the CDF
I This is translated into the Likelihood of the data by

back-propagation differentiation
3Omi, Ueda and Aihara Fully Neural Network based Model for General

Temporal Point Processes

https://arxiv.org/pdf/1905.09690.pdf
https://arxiv.org/pdf/1905.09690.pdf

Recurrent Neural Network

I Recursive Neural Networks also exist, these allow cycles to
previous layers. . .

I Alphago was an RNN. Alphago zero is better and used a
“two-headed” architecture:

I A value network that attributes values to board positions
I A policy network that links board positions to actions that

realise them
I It is essentially making a giant decision tree, which is pruned to

a manageable set by assigning values to states without seeing
them through to outcomes.

I This is all beyond the scope of the course, but you might wish
to examine how these work

Auto encoders

I Auto encoders provide a low-dimensional representation of the
data

I They consist of separable parts, the encoder and the decoder
I They can be used for de-noising
I They are particularly useful when data are limited

Summary

I Neural Networks are possibly the most important development
in AI.

I They provide universal approximation, allowing non-parametric
approaches to wide problem sets

I Network design is critical, and still very much an art
I If you understand the building blocks just a little, you can

access others’ networks and potentially tweak them

Implementing Neural Networks

I Implementations are best though of in two classes.
I Simple networks have a restricted architecture and can be

deployed “out of the box” as a Machine Learning tool.
I Examples include sklearn.linear_model.Perceptron, R’s

neuralnet packages, etc
I Often either shallow or very simple hidden layer structure

I Deep networks require a complex specification of architecture
and significant computational optimisation, so are very large
(and mercifully, open source) endeavours
I This is the focus here.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf
https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf

Deep NN Implementations

I There are two main libraries for deep neural networks:
I TensorFlow, developed by Google Brain.

I Well documented
I Easier to use
I Industry standard
I Tensorboard visualisation is useful

I PyTorch, developed by Facebook.
I Newer, less support
I Dynamical coding paradigm: graph can remodel in the light of

the data
I Debugging is easier? As the code is compiled at runtime, like

native python

https://www.tensorflow.org/tensorboard

Using implementations

I Tensorflow is a low-level language. You can interact with it
through abstraction layers which allows very simple
implementations.
I Keras is very widely used and makes accessing TensorFlow very

easy.
I PyTorch is already conceptually a “high level” implementation.

I Keras can use various backends (implementations):
I TensorFlow
I MXNet
I Theano is a pure python library for a wide class of array

computation, not just Neural Networks. It was forked into
Aesara. . .

I Microsoft Cognitive Toolkit, but this is no longer in active
development.

I See Tensorflow or keras?

https://www.tensorflow.org
https://keras.io/why-use-keras/
https://pytorch.org/
https://keras.io/
https://www.tensorflow.org/
https://mxnet.apache.org
https://pypi.org/project/Theano/
https://github.com/pymc-devs/aesara
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://medium.com/implodinggradients/tensorflow-or-keras-which-one-should-i-learn-5dd7fa3f9ca0

Practical advice

I Explore recommendations. e.g. Practical Advice for Building
Deep Neural Networks:

I As a starting point:
I Use the “adam” optimizer
I Use a ReLU activation function
I Remember not to use an activation function for the output layer

(except for classification, when use a sigmoid)
I Add bias to every layer (shouldn’t have to worry about this in

keras)
I Whiten (normalize) your input data (we’ll see this in the

workshop)
I Don’t believe me. Get other opinions, and try things yourself.

https://pcc.cs.byu.edu/2017/10/02/practical-advice-for-building-deep-neural-networks/
https://pcc.cs.byu.edu/2017/10/02/practical-advice-for-building-deep-neural-networks/

Debugging

I Check the input data. . .
I For many tasks:

I OVERFIT. “Accuracy should be essentially 100% or 99.99%”.
If it isn’t, the network isn’t flexible enough, or learning correctly.

I Change the learning rate
I Decrease mini-batch size
I Remove batch normalization (this exposes NA values)
I Reconsider the architecture
I PLOT your results! training loss by epoch is a natural plot

Additional notes on learning

I Learning a Neural Network is still non-trivial. Start with this
advice4

I Second order methods are often used later in the fitting
process, closer to the global optima.

I Hyperparameters matter. Some optimisers, e.g. Adam, can
tune them semi-automatically. Standard ones require manual
tuning for e.g. step size.

I There is nothing here to prevent overfitting!

4Bengio 2012 Practical Recommendations for Gradient-Based Training of
Deep Architectures

http://arxiv.org/pdf/1206.5533.pdf
http://arxiv.org/pdf/1206.5533.pdf

Learning rates

I not specific to neural networks
I But particularly important due to NN flexibility

Hints on overfitting

I Many optimizers include options for these tricks and more:
I Penalize large weights:

I Ridge (L2) penalisation: L = L0 + λ
∑

i,j |Wij |2
I Lasso (L1) penalisation: L = L0 + λ

∑
i,j |Wij |

I Dropout:
I New hyperparameter pk for layer k: the dropout rate
I Each learning step, with independently randomly set all outputs

from a neuron to 0
I Early stopping:

I retain a test dataset (from the training dataset)
I evaluate performance on the held-out set
I stop when this no longer increases

Further reading

I Keras and PyTorch
I Tensorflow or keras?
I A performance focussed comparison: TensorFlow, PyTorch or

MXNet?
I Tensorboard
I Brilliant.org on Backpropagation
I Practical Advice for Building Deep Neural Networks

https://keras.io/why-use-keras/
https://pytorch.org/
https://medium.com/implodinggradients/tensorflow-or-keras-which-one-should-i-learn-5dd7fa3f9ca0
https://medium.com/syncedreview/tensorflow-pytorch-or-mxnet-a-comprehensive-evaluation-on-nlp-cv-tasks-with-titan-rtx-cdf816fc3935
https://medium.com/syncedreview/tensorflow-pytorch-or-mxnet-a-comprehensive-evaluation-on-nlp-cv-tasks-with-titan-rtx-cdf816fc3935
https://www.tensorflow.org/tensorboard
https://brilliant.org/wiki/backpropagation/
https://pcc.cs.byu.edu/2017/10/02/practical-advice-for-building-deep-neural-networks/

