
Neural Nets and the Perceptron

Daniel Lawson — University of Bristol

Lecture 07.1 (v2.1.1)



Signposting

https://xkcd.com/2237/

https://xkcd.com/2237/


Questions

I What makes a neural network deep?
I Does deep matter?
I How can we learn parameters for a neural net?



Neurons

I Dendrites take inputs
I Axons fire on activation
I Form a dynamical system



Artificial Neurons

I Take a number of input signals
I Activation function transforms to output
I Output sent as input to downstream neurons
I (Typically) constructed to form a directed system for learning



Activation functions

I Neuron i is modelled as:
I A nonlinear activation function f :
I a base rate W0,i,
I and weights Wj,i for each input neuron aj with output xaj

:

f

W0,i +
∑
j=1

Wj,ixaj

 ,

I f is a mapping R→ [rmin, rmax] (which may not be bounded).
I There are many common choices, e.g.:

I tanh: f(y) = (1 + tanh(y)) /2
I logistic: f(y) = 1/ (1 + e−y)
I Step function: f(y) = I(y > 0)
I Rectified linear unit (ReLU): f(y) = I(y > 0)y



Activation functions



Activation functions

I The important features of activation functions are:
I Non-linearity. A deep neural network can be trivially replicated

by a one layer neural network if the activations are linear.
I Derivatives. Learning requires evaluating derivatives, which

should be cheap, and informative.
I Smoothness. Simple discontinuities can be handled, complex

ones make learning slow.



Activation functions in practice

I ReLU contains the important complexity whilst being very fast
to learn;

I It may exhibit convergence problems when y << 0;
I For small networks, complex activation helps.
I A notable modern alternative is Swish1:

I f(y) = y/ (1 + exp(−βy))
I ReLU-like: Converges to zero for x→ −∞ and to x for

x→∞
I Has unbounded derivative for x < 0 so learning still works
I Strangely, monotonicity seems not to be important?

1Ramachandran, Zoph and Le Searching for Activation Functions

https://arxiv.org/abs/1710.05941


Logical functions

I Every boolean function can be implemented by a neural
network2.

I For simplicity f(x ≤ 0) = 0, and f(x > 0) = 1, i.e. the neuron
“fires” on activation. Then, the following can be implemented
on a single node:
I AND: f(x1, x2) = −1.5 + x1 + x2
I OR: f(x1, x2) = −0.5 + x1 + x2
I NOT: f(x1) = 0.5− x1

I Neural networks with more general activation functions can still
implement these functions.

2McCulloch and Pitts (1943) A logical calculus of the ideas immanent in
nervous activity



Logical function problems

I But not every function can be implemented in a single layer
perceptron3:
I XOR: only x1 or x2 can be active

3Minsky and Papert 1969 Perceptrons



Single Layer perceptron (SLP)

I Has just two layers:
I data layer (e.g. features)
I output layer (e.g. classes)

I No hidden layers!
I Weights learned
I Making a linear

classification rule



Mathematical description of SLP
I N Inputs xi and M outputs yj

I Activation function f and with weights Wij :

f(x) = f

(
W0j +

N∑
i=1

Wijxi

)

I W0j allows for an offset (mean) in the activation, just like in
linear regression

I Loss is the square error over all output variables j:

L(W ) =
M∑

j=1
Lj =

M∑
j=1

[
yj − f

(
W0j +

N∑
i=1

Wijxi

)]2

=
M∑

j=1
δ2

ij(wj)

I δij(wj) is the error for input i output j.



Learning through Gradient Descent
I Learn through Gradient Descent:

I i.e. Differentiate the loss with respect to the weights for
i = 0, . . . , N :

∇WL =
(

∂L

∂W10
, . . . ,

∂L

∂Wij
. . . ,

∂L

∂WNM

)T

I where:
∂L

∂Wij
= ∂L

∂f

∂f

∂Wij
= −2δij

∂f

∂Wij
,

I Leading to the update rule:

Wij ←Wij + α
∂f

∂Wij
δij

I We are taking a step of size α in a direction towards the
multivariate minima of the loss

I Choose step size α to take steps that move fast enough whilst
not overshooting.

I In practice α is learned adaptively.



Multilayer Perceptrons / Feed Forward Neural Networks



Multilayer Perceptrons / Feed Forward Neural Networks

I A Neural Network’s power is in hidden layers
I Hidden layers can be treated exactly as the layers we have

observed
I Maths allowing modularly that is transformative

I Architecture choices include the number of layers and the
connectedness:
I Completely connected layers?
I Locality towards data?
I Number of neurons in each layer?

I These choices are somewhat manual and define your model
I Architecture is robust, i.e. many choices will lead to similar

predictions. . .
I But they are not arbitrary!



Universal Approximation Theorem

I Any4 function of n inputs can be approximated
I By using non-linear activation functions (e.g. ReLU)
I Using a single hidden layer, with an exponential width

(number of nodes, scale with n)
I Or a (linear in n) deep network with finite width

4continuous, compact function on Rn



Back Propagation

I Learning Neural networks was an art until back propagation
was discovered5.

I This is a method to compute all derivatives of all weights,
exactly and efficiently.

I Notation:
I Index the current layer as k (of K) with node labels i, the next

layer with labels j.
I Activation function xk

j = f(ak
j )

I ak
j = W k

0j +
∑nk

i=1 W
k
ijx

k
i

I Output layer: WK
ij is learned as a Single Layer Perceptron

I Work backwards from there. . .

5Hecht-Nielsen, Robert. “Theory of the backpropagation neural network.”
Neural networks for perception. Academic Press, 1992. 65-93.



Backpropagation network



Back Propagation

I Hidden layers: back-propagate the error from the next layer to
the current, using the chain rule:

∂L

∂W k
ij

=
n(k+1)∑

j=1

∂L

∂x
(k+1)
j

∂x
(k+1)
j

∂a
(k+1)
ij

∂a
(k+1)
j

∂W k
ij

I i.e. we compute the activation function for one layer as a (sum
over) two components:
I error : δk+1

j = ∂L

∂x
(k+1)
j

I response : ∂x
(k+1)
j

∂a
(k+1)
ij

= ∂f(a)
∂a

I response rate : ∂a
(k+1)
j

∂W k
ij

I The last two are often combined, but this representation
separates the activation function from the weights.



Stochastic Gradient Descent

I Gradient Descent is just the beginning. It is appropriate for:
1. Smooth or convex error functions, so that we do not become

trapped in a local optima;
2. Small data regimes, where we can afford to compute the

entire gradient every update.
I Stochastic Gradient Descent addresses local minima and

computational cost together.
I It uses mini-batches of data for a gradient update.
I This makes each update random, creating a type of annealing

in the algorithm:
I We can take large random steps when we are far from the

optima (large step size),
I And much shorter and hence on average reliable steps when we

are closer (small step size).



Interpreting classifier output

I Neural networks output a set of activations
I It is standard to apply softmax p(z) : Rn → [0, 1] s.t.∑n

i=1 zi = 1:
p(zi) = ezi∑

j e
zj

I This interprets the activation as a log-likelihood
I This is almost always wrong



Interpreting classifier output

I Various sophisticated approaches are available:
I e.g. Mixture Density Networks6

I Calibrate probabilities in a “post processing” layer7

I Neural Networks are not (normally) approximating probabilities.
They are predicting data, or equivalently, predicting decisions.
I e.g. A NN driving a car doesn’t care about the probability of a

person being in the screen.
I It cares about the Loss function, which in this case would be

expressed in terms of actions.

6Bishop 1994 Mixture Density Networks
7Kull et al 2019 NeurIPS Beyond temperature scaling: Obtaining

well-calibrated multiclass probabilities with Dirichlet calibration

https://publications.aston.ac.uk/373/1/NCRG_94_004.pdf
https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf
https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf


References (1)

I Chapter 11 of The Elements of Statistical Learning: Data
Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

I Russell and Norvig Artificial Intelligence: A Modern Approach
I Chapter 20 Section 5: Neural Networks

I Swish: Ramachandran, Zoph and Le Searching for Activation
Functions

I Important historical papers:
I McCulloch and Pitts (1943) A logical calculus of the ideas

immanent in nervous activity
I Minsky and Papert 1969 Perceptrons

I Theoretical practicalities:
I Practical advice from Bengio 2012 Practical Recommendations

for Gradient-Based Training of Deep Architectures
I Kull et al 2019 NeurIPS Beyond temperature scaling: Obtaining

well-calibrated multiclass probabilities with Dirichlet calibration

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://aima.eecs.berkeley.edu/
http://aima.eecs.berkeley.edu/slides-pdf/chapter20b.pdf
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
http://arxiv.org/pdf/1206.5533.pdf
http://arxiv.org/pdf/1206.5533.pdf
https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf
https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf


References (2)

I Important historical papers:
I Hecht-Nielsen, Robert. “Theory of the backpropagation neural

network.” Neural networks for perception. Academic Press,
1992. 65-93.

I Bishop 1994 Mixture Density Networks
I Likelihood and modelling applications of Neural Networks:

I Chilinski and Silva Neural Likelihoods via Cumulative
Distribution Functions

I Albawi, Mohammed and Al-Zawi Understanding of a
convolutional neural network

I Omi, Ueda and Aihara Fully Neural Network based Model for
General Temporal Point Processes

https://publications.aston.ac.uk/373/1/NCRG_94_004.pdf
https://arxiv.org/abs/1811.00974
https://arxiv.org/abs/1811.00974
https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE
https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE
https://arxiv.org/pdf/1905.09690.pdf
https://arxiv.org/pdf/1905.09690.pdf

