Neural Nets and the Perceptron

Daniel Lawson — University of Bristol

Lecture 07.1 (v2.1.1)

Signposting

DEEPAIHIRE® CANDIDATE AN ANALYSIS OF OUR NEW
EVALUATION ALGORITHM Al HRING ALGORITHM HAS
INFERRED INTERNAL WEIGHTINGS RAISED SOME CONCERNS.

WEIGHT
0007
0.0520

0.0208
00l05
783.5627

FACTOR \
EDUCATIONAL BACKGROUND

PAST EXPERIENCE

RECOMMENDATIONS

INTERVIEW PERFORMANCE

ENTHUSIASM FOR DEVELOPING
AND EXPANDING THE USE OF
THE DEEPAIHIRE ALGORITHM

https://xkcd.com/2237/

Questions

» What makes a neural network deep?
» Does deep matter?
» How can we learn parameters for a neural net?

Neurons

Dendrite
Axon bEnmingd

Call body

i
S

» Dendrites take inputs
» Axons fire on activation
» Form a dynamical system

Artificial Neurons

> Take a number of input signals

» Activation function transforms to output

» Output sent as input to downstream neurons

» (Typically) constructed to form a directed system for learning

Activation functions

» Neuron ¢ is modelled as:
» A nonlinear activation function f:
> a base rate Wy,
> and weights W; ; for each input neuron a; with output z,;:

| Woi+ Z Wjita; | »

Jj=1

» fis a mapping R — ["min, "maz] (Which may not be bounded).
» There are many common choices, e.g.:

> tanh: f(y) = (1 + tanh(y)) /2

> logistic: f(y)=1/(1+¢e7Y)

> Step function: f(y) = I(y > 0)

» Rectified linear unit (ReLU): f(y) =L(y > 0)y

Activation functions

output f(y)

tanh

logistic

step function
RelLU

Swish

——y

input 'y

Activation functions

» The important features of activation functions are:
» Non-linearity. A deep neural network can be trivially replicated
by a one layer neural network if the activations are linear.
» Derivatives. Learning requires evaluating derivatives, which
should be cheap, and informative.
» Smoothness. Simple discontinuities can be handled, complex
ones make learning slow.

Activation functions in practice

» RelU contains the important complexity whilst being very fast
to learn;

» It may exhibit convergence problems when y << 0;

» For small networks, complex activation helps.

» A notable modern alternative is Swish®:

> f(y) =y/ (1 +exp(—By))
» RelU-like: Converges to zero for z — —oo and to x for

T — 00
» Has unbounded derivative for z < 0 so learning still works
» Strangely, monotonicity seems not to be important?

!Ramachandran, Zoph and Le

https://arxiv.org/abs/1710.05941

Logical functions

» Every boolean function can be implemented by a neural
network?.

» For simplicity f(x < 0) =0, and f(z > 0) =1, i.e. the neuron
“fires” on activation. Then, the following can be implemented
on a single node:

> AND: f(z1,22) = —1.54+ 21 + 22
» OR: f(z1,22) = —0.5 + z1 + 22
> NOT: f(l‘l) =0.5— il

» Neural networks with more general activation functions can still

implement these functions.

2McCulloch and Pitts (1943) A logical calculus of the ideas immanent in
nervous activity

Logical function problems

» But not every function can be implemented in a single layer
perceptron’:
» XOR: only z; or x5 can be active

Don't fire
Fire

For a two-point g

Bialiwo oee poies 'R":,- . y1. the elass L(ix, 1)) of functions linear
Boolean functions, le‘h teates includes 14 of the 16 - 2* possible
tions linear in the ong-pers. " MPCTS of points, the fraction of func-
zero. ©Point predicates decreases very rapidly toward

3Minsky and Papert 1969 Perceptrons

Single Layer perceptron (SLP)

Input Output » Has just two layers:
Layer Layer

> data layer (e.g. features)
> output layer (e.g. classes)
» No hidden layers!
> Weights learned
» Making a linear
classification rule

Mathematical description of SLP

» N Inputs z; and M outputs y;
» Activation function f and with weights W;;:

N
fx)=f (WOj +> Wz]xz>

u=ll

» Woy; allows for an offset (mean) in the activation, just like in
linear regression
» Loss is the square error over all output variables j:

2

W):%L]:f:[(WOJ+ZWU:U,>]

7j=1 g=1 =1

M

=2 55w
j=1

> §;;(w;) is the error for input i output j.

Learning through Gradient Descent
» Learn through Gradient Descent:

» i.e. Differentiate the loss with respect to the weights for

i=0,...,N
oL oL or \7*
vWL_(8W107...,8WU...,8WNM)
» where:
oL oL of . Of
oW;; — Of oWy T oWy’

» Leading to the update rule:

0
Wij < Wi + ag—r /

Wy

» We are taking a step of size « in a direction towards the

multivariate minima of the loss

» Choose step size « to take steps that move fast enough whilst

not overshooting.
» In practice « is learned adaptively.

Multilayer Perceptrons / Feed Forward Neural Networks

Input Hidden Output
Layer Layers Layer

Multilayer Perceptrons / Feed Forward Neural Networks

» A Neural Network’'s power is in hidden layers
» Hidden layers can be treated exactly as the layers we have
observed
» Maths allowing modularly that is transformative
» Architecture choices include the number of layers and the
connectedness:
» Completely connected layers?
> Locality towards data?
» Number of neurons in each layer?
» These choices are somewhat manual and define your model
» Architecture is robust, i.e. many choices will lead to similar
predictions. ..
» But they are not arbitrary!

Universal Approximation Theorem

1.5 - T T Input Hidden Qutput
Layer Layer Layer
1 + (¢} 9 - i
S~ w, Il o
Xy —p 0y I‘—L; "a\
b S N w;a
X, 05 4 Waq
&)y
0 o + i "
Wy N
-05 " " " X, {n,) JEN Wsq
-85 0 05 1 TSI A),
Xy
(a) Decision boundary. (b) Neural network topology.

Figure 5.19. A two-layer, feed-forward neural network for the XOR problem.

» Any* function of n inputs can be approximated

» By using non-linear activation functions (e.g. ReLU)

» Using a single hidden layer, with an exponential width
(number of nodes, scale with n)

» Or a (linear in n) deep network with finite width

“4continuous, compact function on R™

Back Propagation

» Learning Neural networks was an art until back propagation
was discovered®.
» This is a method to compute all derivatives of all weights,
exactly and efficiently.
> Notation:
> Index the current layer as k (of K) with node labels i, the next
layer with labels j.
> Activation function z% = f(a¥)
> o =W+ 3 Wz’j K
> Output layer: Wé{ is learned as a Single Layer Perceptron
» Work backwards from there. ..

®Hecht-Nielsen, Robert. “Theory of the backpropagation neural network.”
Neural networks for perception. Academic Press, 1992. 65-93.

Backpropagation network

Hidden Output
Layers Layer

Layer K

Back Propagation

» Hidden layers: back-propagate the error from the next layer to
the current, using the chain rule:

1) 5 (lc+1)

oL "V 9L Oal
(

8Wi]§ B Z 8$§k+1)8

: k+1) awk
g=1

Qi
> i.e. we compute the activation function for one layer as a (sum

over) two components:
5k+1 oL

» error :

oz (k+1)
oz (k+1) 0f(a)
. J J—
» response : 5aFD = “8a
k¥
8a<k+1)
» 1
response rate : ‘9”’{3

» The last two are often combined, but this representation
separates the activation function from the weights.

Stochastic Gradient Descent

» Gradient Descent is just the beginning. It is appropriate for:
1. Smooth or convex error functions, so that we do not become
trapped in a local optima;
2. Small data regimes, where we can afford to compute the
entire gradient every update.
» Stochastic Gradient Descent addresses local minima and
computational cost together.
» |t uses mini-batches of data for a gradient update.
» This makes each update random, creating a type of annealing
in the algorithm:
» We can take large random steps when we are far from the
optima (large step size),
» And much shorter and hence on average reliable steps when we
are closer (small step size).

Interpreting classifier output

» Neural networks output a set of activations
> |t is standard to apply softmax p(z) : R" — [0, 1] s.t.

n — -
e

p(2i) = >

. e%i
JG

» This interprets the activation as a log-likelihood
» This is almost always wrong

Interpreting classifier output

» Various sophisticated approaches are available:
> e.g. Mixture Density Networks®
> Calibrate probabilities in a “post processing” layer’
» Neural Networks are not (normally) approximating probabilities.
They are predicting data, or equivalently, predicting decisions.

» e.g. A NN driving a car doesn’t care about the probability of a
person being in the screen.

» |t cares about the Loss function, which in this case would be
expressed in terms of actions.

®Bishop 1994
"Kull et al 2019 NeurlPS

https://publications.aston.ac.uk/373/1/NCRG_94_004.pdf
https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf
https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf

References (1)

» Chapter 11 of
(Friedman, Hastie and
Tibshirani).
» Russell and Norvig
>

» Swish: Ramachandran, Zoph and Le

» Important historical papers:

» McCulloch and Pitts (1943) A logical calculus of the ideas
immanent in nervous activity
» Minsky and Papert 1969 Perceptrons

» Theoretical practicalities:
» Practical advice from Bengio 2012

» Kull et al 2019 NeurlPS

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://aima.eecs.berkeley.edu/
http://aima.eecs.berkeley.edu/slides-pdf/chapter20b.pdf
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
http://arxiv.org/pdf/1206.5533.pdf
http://arxiv.org/pdf/1206.5533.pdf
https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf
https://papers.nips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf

References (2)

» |mportant historical papers:

» Hecht-Nielsen, Robert. “Theory of the backpropagation neural
network.” Neural networks for perception. Academic Press,
1992. 65-93.

> Bishop 1994

» Likelihood and modelling applications of Neural Networks:
» Chilinski and Silva

» Albawi, Mohammed and Al-Zawi

» Omi, Ueda and Aihara

https://publications.aston.ac.uk/373/1/NCRG_94_004.pdf
https://arxiv.org/abs/1811.00974
https://arxiv.org/abs/1811.00974
https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE
https://ieeexplore.ieee.org/abstract/document/8308186?casa_token=WkNQpcZQeX0AAAAA:KJW4xHL-5qc50yzHivHG2f4pnx23A17c3QtIB9PiNlPXxJzFhKn79UUvjnryqiC4__DfeYe8cPE
https://arxiv.org/pdf/1905.09690.pdf
https://arxiv.org/pdf/1905.09690.pdf

