Neural Nets and the Perceptron

Daniel Lawson - University of Bristol

Lecture 07.1 (v2.1.0)

Signposting

- This Block is split into two Lectures:
- 07.1 (this lecture) on the basics
- 07.2 on architecture and implementation
- This is Part 1, which covers:
- Introduction
- Neurons
- Single layer perceptron
- Learning algorithms

Questions

- What makes a neural network deep?
- Does deep matter?
- How can we learn parameters for a neural net?

Neurons

- Dendrites take inputs
- Axons fire on activation
- Form a dynamical system

Artificial Neurons

- Take a number of input signals
- Activation function transforms to output
- Output sent as input to downstream neurons
- (Typically) constructed to form a directed system for learning

Activation functions

- Neuron i is modelled as:
- A nonlinear activation function f :
- a base rate $W_{0, i}$,
$>$ and weights $W_{j, i}$ for each input neuron a_{j} with output $x_{a_{j}}$:

$$
f\left(W_{0, i}+\sum_{j=1} W_{j, i} x_{a_{j}}\right)
$$

$\checkmark f$ is a mapping $\mathbb{R} \rightarrow\left[r_{\min }, r_{\max }\right]$ (which may not be bounded).

- There are many common choices, e.g.:
\downarrow tanh: $f(y)=(1+\tanh (y)) / 2$
- logistic: $f(y)=1 /\left(1+e^{-y}\right)$
- Step function: $f(y)=\mathbb{I}(y>0)$
- Rectified linear unit (ReLU): $f(y)=\mathbb{I}(y>0) y$

Activation functions

- tanh
- logistic
- step function

input y

Activation functions

- The important features of activation functions are:
- Non-linearity. A deep neural network can be trivially replicated by a one layer neural network if the activations are linear.
> Derivatives. Learning requires evaluating derivatives, which should be cheap, and informative.
- Smoothness. Simple discontinuities can be handled, complex ones make learning slow.

Activation functions in practice

- ReLU contains the important complexity whilst being very fast to learn;
- It may exhibit convergence problems when $y \ll 0$;
- For small networks, complex activation helps.
- A notable modern alternative is Swish ${ }^{1}$:
$\downarrow f(y)=y /(1+\exp (-\beta y))$
- ReLU-like: Converges to zero for $x \rightarrow-\infty$ and to x for $x \rightarrow \infty$
- Has unbounded derivative for $x<0$ so learning still works
- Strangely, monotonicity seems not to be important?

[^0]
Logical functions

- Every boolean function can be implemented by a neural network ${ }^{2}$.
- For simplicity $f(x \leq 0)=0$, and $f(x>0)=1$, i.e. the neuron "fires" on activation. Then, the following can be implemented on a single node:
$>$ AND: $f\left(x_{1}, x_{2}\right)=-1.5+x_{1}+x_{2}$
\rightarrow OR: $f\left(x_{1}, x_{2}\right)=-0.5+x_{1}+x_{2}$
\rightarrow NOT: $f\left(x_{1}\right)=0.5-x_{1}$
- Neural networks with more general activation functions can still implement these functions.
${ }^{2}$ McCulloch and Pitts (1943) A logical calculus of the ideas immanent in nervous activity

Logical function problems

- But not every function can be implemented in a single layer perceptron ${ }^{3}$:
\rightarrow XOR: only x_{1} or x_{2} can be active

For a two-point space $R=\{x, y\}$, the class $L(\{x, y \mid)$ of functions linear
in the two one-point in two one-point predicates includes 14 of the $16=2^{21}$ possible
Boolean functions. For larger numbers of tions linear in the one-point predicates of points, the fraction of funczero.

[^1]
Single Layer perceptron (SLP)

> Has just two layers:
$>$ data layer (e.g. features)

- output layer (e.g. classes)
- No hidden layers!
- Weights learned
- Making a linear classification rule

Mathematical description of SLP

$\downarrow N$ Inputs x_{i} and M outputs y_{j}

- Activation function f and with weights $W_{i j}$:

$$
f(\mathbf{x})=f\left(W_{0 j}+\sum_{i=1}^{N} W_{i j} x_{i}\right)
$$

- $W_{0 j}$ allows for an offset (mean) in the activation, just like in linear regression
- Loss is the square error over all output variables j :

$$
\begin{gathered}
L(W)=\sum_{j=1}^{M} L_{j}=\sum_{j=1}^{M}\left[y_{j}-f\left(W_{0 j}+\sum_{i=1}^{N} W_{i j} x_{i}\right)\right]^{2} \\
=\sum_{j=1}^{M} \delta_{i j}^{2}\left(\mathbf{w}_{j}\right)
\end{gathered}
$$

- $\delta_{i j}\left(\mathbf{w}_{j}\right)$ is the error for input i output j.

Learning through Gradient Descent

- Learn through Gradient Descent:
- i.e. Differentiate the loss with respect to the weights for $i=0, \ldots, N$:

$$
\nabla_{W} L=\left(\frac{\partial L}{\partial W_{10}}, \ldots, \frac{\partial L}{\partial W_{i j}} \cdots, \frac{\partial L}{\partial W_{N M}}\right)^{T}
$$

- where:

$$
\frac{\partial L}{\partial W_{i j}}=\frac{\partial L}{\partial f} \frac{\partial f}{\partial W_{i j}}=-2 \delta_{i j} \frac{\partial f}{\partial W_{i j}},
$$

- Leading to the update rule:

$$
W_{i j} \leftarrow W_{i j}+\alpha \frac{\partial f}{\partial W_{i j}} \delta_{i j}
$$

- We are taking a step of size α in a direction towards the multivariate minima of the loss
- Choose step size α to take steps that move fast enough whilst not overshooting.
- In practice α is learned adaptively.

Multilayer Perceptrons / Feed Forward Neural Networks

Multilayer Perceptrons / Feed Forward Neural Networks

- A Neural Network's power is in hidden layers
- Hidden layers can be treated exactly as the layers we have observed
- Maths allowing modularly that is transformative
- Architecture choices include the number of layers and the connectedness:
- Completely connected layers?
- Locality towards data?
- Number of neurons in each layer?
- These choices are somewhat manual and define your model
- Architecture is robust, i.e. many choices will lead to similar predictions. . .
- But they are not arbitrary!

Universal Approximation Theorem

Figure 5.19. A two-layer, feed-forward neural network for the XOR problem.

- Any ${ }^{4}$ function of n inputs can be approximated
- By using non-linear activation functions (e.g. ReLU)
- Using a single hidden layer, with an exponential width (number of nodes, scale with n)
- Or a (linear in n) deep network with finite width ${ }^{4}$ continuous, compact function on \mathbb{R}^{n}

Back Propagation

- Learning Neural networks was an art until back propagation was discovered ${ }^{5}$.
- This is a method to compute all derivatives of all weights, exactly and efficiently.
$>$ Notation:
- Index the current layer as k (of K) with node labels i, the next layer with labels j.
- Activation function $x_{j}^{k}=f\left(a_{j}^{k}\right)$
- $a_{j}^{k}=W_{0 j}^{k}+\sum_{i=1}^{n_{k}} W_{i j}^{k} x_{i}^{k}$
- Output layer: $W_{i j}^{K}$ is learned as a Single Layer Perceptron
- Work backwards from there. . .
${ }^{5}$ Hecht-Nielsen, Robert. "Theory of the backpropagation neural network." Neural networks for perception. Academic Press, 1992. 65-93.

Backpropagation network

Back Propagation

- Hidden layers: back-propagate the error from the next layer to the current, using the chain rule:

$$
\frac{\partial L}{\partial W_{i j}^{k}}=\sum_{j=1}^{n_{(k+1)}} \frac{\partial L}{\partial x_{j}^{(k+1)}} \frac{\partial x_{j}^{(k+1)}}{\partial a_{i j}^{(k+1)}} \frac{\partial a_{j}^{(k+1)}}{\partial W_{i j}^{k}}
$$

i.e. we compute the activation function for one layer as a (sum over) two components:
\downarrow error: $\delta_{j}^{k+1}=\frac{\partial L}{\partial x_{j}^{(k+1)}}$
$>$ response : $\frac{\partial x_{j}^{(k+1)}}{\partial a_{i j}^{k+1)}}=\frac{\partial f(a)}{\partial a}$
\downarrow response rate : $\frac{\partial a_{j}^{(k+1)}}{\partial W_{i j}^{k}}$

- The last two are often combined, but this representation separates the activation function from the weights.

Stochastic Gradient Descent

- Gradient Descent is just the beginning. It is appropriate for:

1. Smooth or convex error functions, so that we do not become trapped in a local optima;
2. Small data regimes, where we can afford to compute the entire gradient every update.

- Stochastic Gradient Descent addresses local minima and computational cost together.
- It uses mini-batches of data for a gradient update.

This makes each update random, creating a type of annealing in the algorithm:

- We can take large random steps when we are far from the optima (large step size),
- And much shorter and hence on average reliable steps when we are closer (small step size).

Interpreting classifier output

- Neural networks output a set of activations
- It is standard to apply softmax $p(\mathbf{z}): \mathcal{R}^{n} \rightarrow[0,1]$ s.t. $\sum_{i=1}^{n} z_{i}=1$:

$$
p\left(z_{i}\right)=\frac{e^{z_{i}}}{\sum_{j} e^{z_{j}}}
$$

- This interprets the activation as a log-likelihood
- This is almost always wrong

Interpreting classifier output

- Various sophisticated approaches are available:
$>$ e.g. Mixture Density Networks ${ }^{6}$
- Calibrate probabilities in a "post processing" layer ${ }^{7}$
- Neural Networks are not (normally) approximating probabilities. They are predicting data, or equivalently, predicting decisions.
$>$ e.g. A NN driving a car doesn't care about the probability of a person being in the screen.
- It cares about the Loss function, which in this case would be expressed in terms of actions.

[^2]
References (1)

- Chapter 11 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
- Russell and Norvig Artificial Intelligence: A Modern Approach
- Chapter 20 Section 5: Neural Networks
- Swish: Ramachandran, Zoph and Le Searching for Activation Functions
- Important historical papers:
- McCulloch and Pitts (1943) A logical calculus of the ideas immanent in nervous activity
- Minsky and Papert 1969 Perceptrons
- Theoretical practicalities:
- Practical advice from Bengio 2012 Practical Recommendations for Gradient-Based Training of Deep Architectures
- Kull et al 2019 NeurIPS Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration

References (2)

- Important historical papers:
- Hecht-Nielsen, Robert. "Theory of the backpropagation neural network." Neural networks for perception. Academic Press, 1992. 65-93.
- Bishop 1994 Mixture Density Networks
- Likelihood and modelling applications of Neural Networks:
- Chilinski and Silva Neural Likelihoods via Cumulative Distribution Functions
- Albawi, Mohammed and Al-Zawi Understanding of a convolutional neural network
- Omi, Ueda and Aihara Fully Neural Network based Model for General Temporal Point Processes

[^0]: ${ }^{1}$ Ramachandran, Zoph and Le Searching for Activation Functions

[^1]: ${ }^{3}$ Minsky and Papert 1969 Perceptrons

[^2]: ${ }^{6}$ Bishop 1994 Mixture Density Networks
 ${ }^{7}$ Kull et al 2019 NeurIPS Beyond temperature scaling: Obtaining

