Decisions, Trees, Forests

Daniel Lawson University of Bristol

Lecture 06.1 (v2.0.1)

—y

In a Random
Forest

where do Data
Scientists go camping?

Dinosaur comics meme

https://www.linkedin.com/posts/watitap_this-is-hilarious-what-is-a-random-forest-activity-7060857693221097472-SETf

Signposting

» > This is the final set of key classification tools: Decision Trees
and Random Forests.
> We'll also cover regression trees.

» The Workshop covers using them in practice.

Questions

» Which splits should we make in a tree?
» When should we stop splitting?
» How can we combine multiple trees?

Trees, Forests, Decisions

» Decision trees: are extremely flexible and can fit highly
non-linear spaces.
» They can capture arbitrary complexity in the training data
» They tend to overfit
» They have overly-regular shapes, aligned to features
» Random Forests: Combining many random, decision trees
» Randomization fights overfitting

> Averaging creates smoother decision boundaries
» Remarkable predictive performance.

Important note on programming tools

» R has a more complete and more robustly documented toolset
for statistics that does python.

» The ML toolsets start to look more cutting-edge in python
than in R.

» Everything can be completed in either language, but we will
switch to the most convenient tool for the job.

» There are two reasons for this:

1. Community momentum: sklearn is the de-facto standard,
and so new methods are incorporated into it, making it the
de-facto standard. . .

2. Native constructs. R has a good data.frame interface. python
has a good list/hash interface. Both have extensions to handle
everything, but working native is nicer.

» We use R and Python this week, then switch to Python.

Some data, before we start

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test train_test_split(
features_pd, labels, train_size=0.8, test_size=0.2)

Decision Tree

> A decision tree is a sequence of conditionally evaluated tests:
» If ¢y then:
» If ¢11 then:
> ...

» Else !¢1;1 so:

> ...

» Else lc; so:
» If co; then:

> ...

» Else !¢gp so:
> ...

» The conditions need to be chosen appropriately. How to
decide?

Decision Tree Algorithm: CART

» Classification and Regression Trees (CART)!
» Consider a decision tree for C classes.

» For each feature j € [1,--- , J], we evaluate the best-split
location in the feature space. . .
» i.e. the one that Minimises the “Gini impurity”:

C C
Gi=1-) p%.=> pje(l - pjc).
c=1 e=l1l

» The assignment probability p;. is the probability that class c is
found at this leaf of the tree, if we use feature j.

» We choose the “best” (induces many p — 0 or p — 1) feature
as the next split.

LCART = Classification and Regression Trees. Breiman, Leo; Friedman, J.
H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees. See

https://onlinelibrary.wiley.com/doi/full/10.1002/widm.8?casa_token=zVBiCZT6d24AAAAA%3AoZIV06S8oIjh5erpzsC0yzVmMFP6ilRntX9qfzmk8KNgKr-FKbWxCkxax1biS2eP8_o5h7bzPpkD5A

Gini index example

def sq(y):
return y * y
sq = np.vectorize(sq)
def gini(x):
return 1-sq(x/x.sum()).sum()

Gini index example

test=pd.DataFrame ()
test["size0"]=np.array([100,100,100])
test["sizel.1"]=np.array([50,50,50])
test["sizel.2"]=np.array([50,50,50])
test["size2.1"]=np.array([100,0,0])
test["size2.2"]=np.array([0,100,100])

Gini index example

test=pd.DataFrame ()
test["size0"]=np.array([100,100,100])

test["sizel.
test["sizel.
test["size2.
test["size2.

print("Gini
print ("Gini

1"]=np.array([50,50,50])
2"]=np.array([50,50,50])
1"]=np.array([100,0,0])
2"]=np.array([0,100,100])

index initial value =",gini(test["size0"]))
reduction from split 1 =",gini(test["size0"]) -

(gini(test["sizel.1"])/2+gini(test["sizel.2"]1)/2))

print ("Gini

reduction from split 2 =",gini(test["size0"]) -

(gini(test["size2.1"])*1/3+gini(test["size2.2"])*2/3))

Gini index example

test=pd.DataFrame ()
test["size0"]=np.array([100,100,100])
test["sizel.1"]=np.array([50,50,50])
test["sizel.2"]=np.array([50,50,50])
test["size2.1"]=np.array([100,0,0])
test["size2.2"]=np.array([0,100,100])

print("Gini index initial value =",gini(test["size0"]))

print ("Gini reduction from split 1 =",gini(test["size0"]) -
(gini(test["sizel.1"])/2+gini(test["sizel.2"]1)/2))

print ("Gini reduction from split 2 =",gini(test["size0"]) -
(gini(test["size2.1"])*1/3+gini(test["size2.2"])*2/3))

0.666666666667
0.0
0.333333333334

Gini index initial value
Gini reduction from split 1
Gini reduction from split 2

Decision Tree Algorithm: ID3

» But is Gini Index right?
» ID3? (lterative Dichotomiser 3) Maximises the “information
gain”, by Minimising;:

C
Hj=- ijc 10g(PjC)

c=1

» The difference is how each probability is weighted.

P> We still define “best” feature as one that makes many p — 0
and p — 1.

» Gini punishes large absolute-value mistakes whilst information
punishes large log-scale mistakes.

» The difference is important for a tree but usually unimportant
for the classifier.

2D = Iterative Dichotomiser. Quinlan, J. R. 1986.
Mach. Learn. 1, 1 (Mar. 1986), 81-106.

https://link.springer.com/article/10.1007/BF00116251
https://link.springer.com/article/10.1007/BF00116251

ID3

def ylogy(y): # CAREFUL!
ty=[max(1le-10,x) for x in y]
return y * np.log(ty)

def id3(x):

return -ylogy(x/x.sum()).sum()

ID3

def ylogy(y): # CAREFUL!
ty=[max(1le-10,x) for x in y]
return y * np.log(ty)

def id3(x):

return -ylogy(x/x.sum()).sum()

print ("ID3 index initial value =",id3(test["size0"]))

print ("ID3 reduction from split 1 =",id3(test["size0"]) -
(id3(test["sizel.1"])/2+id3(test["sizel.2"]1)/2))

print ("ID3 reduction from split 2 =",id3(test["size0"]) -
(id3(test["size2.1"])*1/3+id3(test["size2.2"])*2/3))

ID3

def ylogy(y): # CAREFUL!
ty=[max(1le-10,x) for x in y]
return y * np.log(ty)

def id3(x):

return -ylogy(x/x.sum()).sum()

print ("ID3 index initial value =",id3(test["size0"]))

print ("ID3 reduction from split 1 =",id3(test["size0"]) -
(id3(test["sizel.1"])/2+id3(test["sizel.2"]1)/2))

print ("ID3 reduction from split 2 =",id3(test["size0"]) -
(id3(test["size2.1"])*1/3+id3(test["size2.2"])*2/3))

1.0986122886681096
0.0
0.6365141682948128

ID3 index initial value
ID3 reduction from split 1
ID3 reduction from split 2

Decision Tree pruning (Information Criteria)

» Decision trees overfit to the data.
» Penalisation is often used:

>
>

>

Minimise £’ = L(y,§) + «|T|
Where |T'| is the number of bipartitions in the tree, and £ is a
log-loss.
All the usual caveats of Information Criteria apply.
Tree search is usually performed by a greedy brute force
approach:

> Evaluate £’ for every branch in the tree

» Choose the sub-tree with the lowest value

P Repeat until no cuts improve the loss

Alternative search approaches exist for large trees

Decision Tree pruning (Cross Validation)

» To avoid the problems with Information Criteria,
Cross-validation can be used
» Choose the sub-tree that has the best out of sample
predictive power.
> With a single left-out dataset (risks overfitting),
» Or random sets (higher variance)
> Now we have to re-compute the entire model each pruning
» Search is a computational concern

Regression Trees (simple version)

» Regression trees are constructed identically to classification
trees

» Decision can follow information or squared loss

> Prediction is the average §;|{i € c;} = ¥, inside the leaf j

» Comparing to classification: if y € {0, 1} this reduces to:

Ry - = To-i@? o
_ ;ﬂ; v? = 2pi(x) + 9(0)°) (2)

» Which since § = g, simplifies to:

R= -2+)
— y(1—y) (4)

Comparing Regression Trees to Classification Trees

» Similarly the Gini index is:

J
G = > pi(1—py) (5)
=1

= y(1-1) Q)

» So regression trees and classification trees use equivalent loss
functions in CART.

General Regression Trees

» Within each decision node (leaf) we fit a model
This is typically a constant model, i.e. the average
> Why?
» The piecewise constant model fit can be arbitrarily good
(number of splits scales with data volume)
» Making non-constant models consistent is computationally
costly

» Why not?
» Computational cost grows with tree depth

» Often locally the structure is linear
3

\4

P Leads to Local Regression Trees
» Complex if we ensure that the local regressions meet up

3Karalic A, (1992)
ECAI-92

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.3091

Decision tree notes

» In practice, bagging (bootstrapping the data) is important, to
prevent overfitting and for smoothing the output

» The choice of feature space directly affects the decisions that
are examined. So LDA or similar could usefully be applied to
obtain “orthogonal” feature space, reducing depth.

» There are parameters, e.g. depth/stopping criterion/split rule,
which could be chosen by cross-validation.

Fitting a Decision Tree in Python

from sklearn import tree
cldt = tree.DecisionTreeClassifier()

trained_model_d= cldt.fit(X_train, y_train)
y_pred_d = cldt.predict(X_test)
error_d = zero_one_loss(y_test, y_pred_d)

Plot a Decision Tree in Python

from sklearn.externals.six import StringIO

from IPython.display import Image

from sklearn.tree import export_graphviz

import pydotplus

dot_data = StringI0()

export_graphviz(cldt, out_file=dot_data,max_depth=2,
feature_names=X_train.columns.values,
filled , rounded)

graph = pydotplus.graph_from_dot_data(

dot_data.getvalue())
Image (graph.create_png())

Decision Tree (whole)

Decision Tree (root

srv_count <= 319.0
gini = 0593

sampl 0
value = [226, 4,5, 1, 125, 1, 10899, 24, 9907, 1, 26
\ 108, 2, 160, 28313, 93, 103, 2]

gi
mples

25,1, 10899, 24,9904, 1,26
160, 29, 93, 103, 2])

srv_rate <= 0.
gini =0.036 K
samples = 11003 samples = 10710
value =[0,0,0,0,0, 0, 10802, 0, 40,0,0,8,0 | | value=[226, 4,5, 1, 125, 1, 97, 24, 9864, 1, 26, 100
150,0,3,0, 0]) 2,10, 29, 90, 103, 2]
________cibedbdion

Decision Tree in feature space (1)

Decision Tree in feature space (2)

dst_host_diff_srv_rate

Boosted decision tree

» As noted previously, adaboost is using a sequence of
decisions to make a boosted classifier.

» By default it uses a boosted depth=1 decision tree,
i.e. classifiers were just the features. This is called a decision
stump.

» You can use deeper trees, eg. with xgboost*; usually the depth
is limited to control learning cost and complexity

» Boosting in theory doesn't need trees so the difference is about
learning rate and computational complexity

*J. Elith, J. Leathwick, and T. Hastie
(2008). British Ecological Society.

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2656.2008.01390.x
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2656.2008.01390.x

Random Forest

> A random forest is a set of decision trees that are combined
together to perform classification.
» For each of T trees, the following steps are run:
a) Choose which of J variables to include:

» Choose m¢ random features. The canonical choice is
mf = \/j

> Like bagging for features? (downsampling without replaceme

b) Learn a Tree classifier independently as above.

Random Forest outputs

» The Random Forest combines decision trees into a
classification by:
» Weighting each tree according to its performance
» Report the weighted vote
> |t is also possible to extract feature importance:
» How much a feature decreases the score, averaged over all trees
» Features that are never used will get a score of 0
> Features that are important in every tree in which they appear

will get a high score
» Features that are correlated will often split their importance

Random Forest vs boosted decision tree

» Gradient Boosting Machine (GBM) is the go-to boosted
decision tree

» GBM and RF differ in the way the trees are built, the order,
and the way the results are combined

» RF can be trivially paralellized

» GBMs seem to outperform RFs under competition conditions,
but do worse when their parameters are untuned®

*http://fastml.com/what-is-better-gradient-boosted-trees-or-random-forest/

Random Forest algorithm

from sklearn.ensemble import RandomForestClassifier

clf= RandomForestClassifier(n_jobs=-1,
random_state=3, n_estimators=102)

trained_model= clf.fit(X_train, y_train)

clf_score=trained_model.score(X_train, y_train)

y_pred = clf.predict(X_test)

Random Forest Feature Importance

feature_importances = pd.DataFrame(clf.feature_importances_,
index X_train.columns,
columns=[1) .sort_values(s
ascending)

feature_importances.nlargest (10,
columns=[1) .plot (kind ,figsize=(18, 5))

Random Forest Feature Importance

Random Forest Extract single trees

estimator5 = clf.estimators_[5]

dot_data = StringI0()

export_graphviz(estimator5, out_file=dot_data,max_depth=2,
feature_names=X_train.columns.values,
filled , rounded)

graph = pydotplus.graph from_dot_data(dot_data.getvalue())
Image (graph.create_png())

Random Forest Feature Trees

service <= 05

GSt_host_Sr_count <= 38.0 \
gni =0.151
samples = 71
value=[0,0,0,0, 6 0, 10488, 13,716,0,0,65,0 | | value =[213 8, 6,0, 115, 0,583, 7,
4,0,78,0,) 4,132,28158,0, 82, 2]

dst_host_diff_ s _rate <= 0.12 dst host_siv_count == 1765
0029 0.119
samples = 6607 ‘samples
valua =[0,0, 0,0, 6,0, 10468, 12, 4,0,0,65,0 | | value =[0,0,0,0,0,0,
38,0,33, 0,0 J 0,45,

488
0,17120,00,02
o9)

Random Forest Feature Trees

count<=350.5
gint

valua = [230,0, 6, 2, 134, 3, 10933, 18,9963, 0,17
102, 2, 164, 28199, 113,116, 1]

X int<=254.0

0.185
samplas

value =[17,0,1,2. 18,3,
226,32

7685
10903, 11, 950, 0,9, 102
3,26, 49, 1]

Final thoughts

» Random Forests are typically better than bagged decision trees

» There are theoretical examples where either dominates

» Boosting changes things but isn't a magic bullet

» Usually worth being open minded; the differences could be seen
as tuning parameters of a more general algorithm

Signposting

» References:
» Tree methods:
» Chapter 9.2 of
(Friedman, Hastie and

Tibshirani).
>

>

» Regression Trees:

> Karalic A,
(1992) ECAI-92

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://online.stat.psu.edu/stat508/
https://online.stat.psu.edu/stat508/lesson/11/11.8/11.8.2
https://medium.com/deep-math-machine-learning-ai/chapter-4-decision-trees-algorithms-b93975f7a1f1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.3091
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.3091

Signposting

» References (2):

» Boosted Decision Trees:
» J. Elith, J. Leathwick, and T. Hastie
(2008). British Ecological Society.
» CART:

» CART = Classification and Regression Trees. Breiman, Leo;
Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984).
Classification and regression trees.

> is popular.

» [ID3: Quinlan, J. R. 1986. Mach.
Learn. 1, 1 (Mar. 1986), 81-106.

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2656.2008.01390.x
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2656.2008.01390.x
https://onlinelibrary.wiley.com/doi/full/10.1002/widm.8?casa_token=zVBiCZT6d24AAAAA%3AoZIV06S8oIjh5erpzsC0yzVmMFP6ilRntX9qfzmk8KNgKr-FKbWxCkxax1biS2eP8_o5h7bzPpkD5A
https://link.springer.com/article/10.1007/BF00116251

Signposting

» In the practical we'll implement these models in R and Python;
compare implementations, and to previous results.

» Next semester we'll start with the “other” LDA (Latent
Dirichlet Allocation), Topic Modelling, and Modelling
Documents.

» References:

» Chapter 15 of

(Friedman, Hastie and
Tibshirani).

VVYVYYVYY

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://machinelearningmastery.com/implement-random-forest-scratch-python/
http://blog.citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics
https://blog.datadive.net/selecting-good-features-part-iii-random-forests/
http://www.stat.cmu.edu/~cshalizi/350-2006/lecture-10.pdf
https://arxiv.org/pdf/1407.7502.pdf

