
Decisions, Trees, Forests

Daniel Lawson University of Bristol

Lecture 06.1 (v2.0.1)

Dinosaur comics meme

https://www.linkedin.com/posts/watitap_this-is-hilarious-what-is-a-random-forest-activity-7060857693221097472-SETf

Signposting

I I This is the final set of key classification tools: Decision Trees
and Random Forests.

I We’ll also cover regression trees.
I The Workshop covers using them in practice.

Questions

I Which splits should we make in a tree?
I When should we stop splitting?
I How can we combine multiple trees?

Trees, Forests, Decisions

I Decision trees: are extremely flexible and can fit highly
non-linear spaces.
I They can capture arbitrary complexity in the training data
I They tend to overfit
I They have overly-regular shapes, aligned to features

I Random Forests: Combining many random, decision trees
I Randomization fights overfitting
I Averaging creates smoother decision boundaries
I Remarkable predictive performance.

Important note on programming tools

I R has a more complete and more robustly documented toolset
for statistics that does python.

I The ML toolsets start to look more cutting-edge in python
than in R.

I Everything can be completed in either language, but we will
switch to the most convenient tool for the job.

I There are two reasons for this:
1. Community momentum: sklearn is the de-facto standard,

and so new methods are incorporated into it, making it the
de-facto standard. . .

2. Native constructs. R has a good data.frame interface. python
has a good list/hash interface. Both have extensions to handle
everything, but working native is nicer.

I We use R and Python this week, then switch to Python.

Some data, before we start

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
features_pd, labels, train_size=0.8, test_size=0.2)

Decision Tree

I A decision tree is a sequence of conditionally evaluated tests:
I If c1 then:

I If c11 then:
I · · ·

I Else !c11 so:
I · · ·

I Else !c1 so:
I If c21 then:

I · · ·
I Else !c21 so:

I · · ·
I The conditions need to be chosen appropriately. How to

decide?

Decision Tree Algorithm: CART

I Classification and Regression Trees (CART)1

I Consider a decision tree for C classes.
I For each feature j ∈ [1, · · · , J], we evaluate the best-split

location in the feature space. . .
I i.e. the one that Minimises the “Gini impurity”:

Gj = 1−
C∑

c=1
p2

jc =
C∑

c=1
pjc(1− pjc).

I The assignment probability pjc is the probability that class c is
found at this leaf of the tree, if we use feature j.

I We choose the “best” (induces many p→ 0 or p→ 1) feature
as the next split.

1CART = Classification and Regression Trees. Breiman, Leo; Friedman, J.
H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees. See
Wei-Yin Loh’s Review

https://onlinelibrary.wiley.com/doi/full/10.1002/widm.8?casa_token=zVBiCZT6d24AAAAA%3AoZIV06S8oIjh5erpzsC0yzVmMFP6ilRntX9qfzmk8KNgKr-FKbWxCkxax1biS2eP8_o5h7bzPpkD5A

Gini index example

def sq(y):
return y * y

sq = np.vectorize(sq)
def gini(x):

return 1-sq(x/x.sum()).sum()

Gini index example

test=pd.DataFrame()
test["size0"]=np.array([100,100,100])
test["size1.1"]=np.array([50,50,50])
test["size1.2"]=np.array([50,50,50])
test["size2.1"]=np.array([100,0,0])
test["size2.2"]=np.array([0,100,100])

print("Gini index initial value =",gini(test["size0"]))
print("Gini reduction from split 1 =",gini(test["size0"]) -

(gini(test["size1.1"])/2+gini(test["size1.2"])/2))
print("Gini reduction from split 2 =",gini(test["size0"]) -

(gini(test["size2.1"])*1/3+gini(test["size2.2"])*2/3))

Gini index initial value = 0.666666666667
Gini reduction from split 1 = 0.0
Gini reduction from split 2 = 0.333333333334

Gini index example

test=pd.DataFrame()
test["size0"]=np.array([100,100,100])
test["size1.1"]=np.array([50,50,50])
test["size1.2"]=np.array([50,50,50])
test["size2.1"]=np.array([100,0,0])
test["size2.2"]=np.array([0,100,100])

print("Gini index initial value =",gini(test["size0"]))
print("Gini reduction from split 1 =",gini(test["size0"]) -

(gini(test["size1.1"])/2+gini(test["size1.2"])/2))
print("Gini reduction from split 2 =",gini(test["size0"]) -

(gini(test["size2.1"])*1/3+gini(test["size2.2"])*2/3))

Gini index initial value = 0.666666666667
Gini reduction from split 1 = 0.0
Gini reduction from split 2 = 0.333333333334

Gini index example

test=pd.DataFrame()
test["size0"]=np.array([100,100,100])
test["size1.1"]=np.array([50,50,50])
test["size1.2"]=np.array([50,50,50])
test["size2.1"]=np.array([100,0,0])
test["size2.2"]=np.array([0,100,100])

print("Gini index initial value =",gini(test["size0"]))
print("Gini reduction from split 1 =",gini(test["size0"]) -

(gini(test["size1.1"])/2+gini(test["size1.2"])/2))
print("Gini reduction from split 2 =",gini(test["size0"]) -

(gini(test["size2.1"])*1/3+gini(test["size2.2"])*2/3))

Gini index initial value = 0.666666666667
Gini reduction from split 1 = 0.0
Gini reduction from split 2 = 0.333333333334

Decision Tree Algorithm: ID3

I But is Gini Index right?
I ID32 (Iterative Dichotomiser 3) Maximises the “information

gain”, by Minimising:

Hj = −
C∑

c=1
pjc log(pjc)

I The difference is how each probability is weighted.
I We still define “best” feature as one that makes many p→ 0

and p→ 1.
I Gini punishes large absolute-value mistakes whilst information

punishes large log-scale mistakes.
I The difference is important for a tree but usually unimportant

for the classifier.

2ID = Iterative Dichotomiser. Quinlan, J. R. 1986. Induction of Decision
Trees. Mach. Learn. 1, 1 (Mar. 1986), 81-106.

https://link.springer.com/article/10.1007/BF00116251
https://link.springer.com/article/10.1007/BF00116251

ID3

def ylogy(y): # CAREFUL!
ty=[max(1e-10,x) for x in y]
return y * np.log(ty)

def id3(x):
return -ylogy(x/x.sum()).sum()

print("ID3 index initial value =",id3(test["size0"]))
print("ID3 reduction from split 1 =",id3(test["size0"]) -

(id3(test["size1.1"])/2+id3(test["size1.2"])/2))
print("ID3 reduction from split 2 =",id3(test["size0"]) -

(id3(test["size2.1"])*1/3+id3(test["size2.2"])*2/3))

ID3 index initial value = 1.0986122886681096
ID3 reduction from split 1 = 0.0
ID3 reduction from split 2 = 0.6365141682948128

ID3

def ylogy(y): # CAREFUL!
ty=[max(1e-10,x) for x in y]
return y * np.log(ty)

def id3(x):
return -ylogy(x/x.sum()).sum()

print("ID3 index initial value =",id3(test["size0"]))
print("ID3 reduction from split 1 =",id3(test["size0"]) -

(id3(test["size1.1"])/2+id3(test["size1.2"])/2))
print("ID3 reduction from split 2 =",id3(test["size0"]) -

(id3(test["size2.1"])*1/3+id3(test["size2.2"])*2/3))

ID3 index initial value = 1.0986122886681096
ID3 reduction from split 1 = 0.0
ID3 reduction from split 2 = 0.6365141682948128

ID3

def ylogy(y): # CAREFUL!
ty=[max(1e-10,x) for x in y]
return y * np.log(ty)

def id3(x):
return -ylogy(x/x.sum()).sum()

print("ID3 index initial value =",id3(test["size0"]))
print("ID3 reduction from split 1 =",id3(test["size0"]) -

(id3(test["size1.1"])/2+id3(test["size1.2"])/2))
print("ID3 reduction from split 2 =",id3(test["size0"]) -

(id3(test["size2.1"])*1/3+id3(test["size2.2"])*2/3))

ID3 index initial value = 1.0986122886681096
ID3 reduction from split 1 = 0.0
ID3 reduction from split 2 = 0.6365141682948128

Decision Tree pruning (Information Criteria)

I Decision trees overfit to the data.
I Penalisation is often used:

I Minimise L′ = L(y, ŷ) + α|T |
I Where |T | is the number of bipartitions in the tree, and L is a

log-loss.
I All the usual caveats of Information Criteria apply.
I Tree search is usually performed by a greedy brute force

approach:
I Evaluate L′ for every branch in the tree
I Choose the sub-tree with the lowest value
I Repeat until no cuts improve the loss

I Alternative search approaches exist for large trees

Decision Tree pruning (Cross Validation)

I To avoid the problems with Information Criteria,
Cross-validation can be used

I Choose the sub-tree that has the best out of sample
predictive power.
I With a single left-out dataset (risks overfitting),
I Or random sets (higher variance)

I Now we have to re-compute the entire model each pruning
I Search is a computational concern

Regression Trees (simple version)

I Regression trees are constructed identically to classification
trees

I Decision can follow information or squared loss
I Prediction is the average ŷi|{i ∈ cj} = ȳcj inside the leaf j
I Comparing to classification: if y ∈ {0, 1} this reduces to:

Rj = 1
Nj

∑
i∈cj

(yi − ŷ(xi))2 (1)

= 1
Nj

∑
i∈cj

(
y2

i − 2yiŷ(xi) + ŷ(xi)2
)

(2)

I Which since ŷ = ȳ, simplifies to:

R = ȳ − 2ȳ2 + ȳ2 (3)
= ȳ(1− ȳ) (4)

Comparing Regression Trees to Classification Trees

I Similarly the Gini index is:

G =
J∑

j=1
pj(1− pj) (5)

= ȳ(1− ȳ) (6)

I So regression trees and classification trees use equivalent loss
functions in CART.

General Regression Trees

I Within each decision node (leaf) we fit a model
I This is typically a constant model, i.e. the average
I Why?

I The piecewise constant model fit can be arbitrarily good
(number of splits scales with data volume)

I Making non-constant models consistent is computationally
costly

I Why not?
I Computational cost grows with tree depth
I Often locally the structure is linear

I Leads to Local Regression Trees 3

I Complex if we ensure that the local regressions meet up

3Karalic A, “Employing Linear Regression in Regression Tree Leaves” (1992)
ECAI-92

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.3091

Decision tree notes

I In practice, bagging (bootstrapping the data) is important, to
prevent overfitting and for smoothing the output

I The choice of feature space directly affects the decisions that
are examined. So LDA or similar could usefully be applied to
obtain “orthogonal” feature space, reducing depth.

I There are parameters, e.g. depth/stopping criterion/split rule,
which could be chosen by cross-validation.

Fitting a Decision Tree in Python

from sklearn import tree
cldt = tree.DecisionTreeClassifier()

trained_model_d= cldt.fit(X_train, y_train)
y_pred_d = cldt.predict(X_test)
error_d = zero_one_loss(y_test, y_pred_d)

Plot a Decision Tree in Python

from sklearn.externals.six import StringIO
from IPython.display import Image
from sklearn.tree import export_graphviz
import pydotplus
dot_data = StringIO()
export_graphviz(cldt, out_file=dot_data,max_depth=2,

feature_names=X_train.columns.values,
filled=True, rounded=True)

graph = pydotplus.graph_from_dot_data(
dot_data.getvalue())

Image(graph.create_png())

Decision Tree (whole)

Decision Tree (root)

Decision Tree in feature space (1)

Decision Tree in feature space (2)

Boosted decision tree

I As noted previously, adaboost is using a sequence of
decisions to make a boosted classifier.

I By default it uses a boosted depth=1 decision tree,
i.e. classifiers were just the features. This is called a decision
stump.

I You can use deeper trees, eg. with xgboost4; usually the depth
is limited to control learning cost and complexity

I Boosting in theory doesn’t need trees so the difference is about
learning rate and computational complexity

4J. Elith, J. Leathwick, and T. Hastie “A working guide to boosted regression
trees” (2008). British Ecological Society.

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2656.2008.01390.x
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2656.2008.01390.x

Random Forest

I A random forest is a set of decision trees that are combined
together to perform classification.

I For each of T trees, the following steps are run:
a) Choose which of J variables to include:
I Choose mf random features. The canonical choice is

mf =
√
J .

I Like bagging for features? (downsampling without replaceme
b) Learn a Tree classifier independently as above.

Random Forest outputs

I The Random Forest combines decision trees into a
classification by:
I Weighting each tree according to its performance
I Report the weighted vote

I It is also possible to extract feature importance:
I How much a feature decreases the score, averaged over all trees
I Features that are never used will get a score of 0
I Features that are important in every tree in which they appear

will get a high score
I Features that are correlated will often split their importance

Random Forest vs boosted decision tree

I Gradient Boosting Machine (GBM) is the go-to boosted
decision tree

I GBM and RF differ in the way the trees are built, the order,
and the way the results are combined

I RF can be trivially paralellized
I GBMs seem to outperform RFs under competition conditions,

but do worse when their parameters are untuned5

5http://fastml.com/what-is-better-gradient-boosted-trees-or-random-forest/

Random Forest algorithm

from sklearn.ensemble import RandomForestClassifier
clf= RandomForestClassifier(n_jobs=-1,

random_state=3, n_estimators=102)
trained_model= clf.fit(X_train, y_train)
clf_score=trained_model.score(X_train, y_train)
y_pred = clf.predict(X_test)

Random Forest Feature Importance

feature_importances = pd.DataFrame(clf.feature_importances_,
index = X_train.columns,
columns=['importance']).sort_values('importance',
ascending=False)

feature_importances.nlargest(10,
columns=['importance']).plot(kind='bar',figsize=(18, 5))

Random Forest Feature Importance

Random Forest Extract single trees

estimator5 = clf.estimators_[5]

dot_data = StringIO()
export_graphviz(estimator5, out_file=dot_data,max_depth=2,

feature_names=X_train.columns.values,
filled=True, rounded=True)

graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.create_png())

Random Forest Feature Trees

Random Forest Feature Trees

Final thoughts

I Random Forests are typically better than bagged decision trees
I There are theoretical examples where either dominates
I Boosting changes things but isn’t a magic bullet
I Usually worth being open minded; the differences could be seen

as tuning parameters of a more general algorithm

Signposting

I References:
I Tree methods:

I Chapter 9.2 of The Elements of Statistical Learning: Data
Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

I Penn State U Applied Data Mining and Statistical Learning
How to prune trees

I Decision Tree Algorithms: Deep Math ML
I Regression Trees:

I Karalic A, “Employing Linear Regression in Regression Tree
Leaves” (1992) ECAI-92

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://online.stat.psu.edu/stat508/
https://online.stat.psu.edu/stat508/lesson/11/11.8/11.8.2
https://medium.com/deep-math-machine-learning-ai/chapter-4-decision-trees-algorithms-b93975f7a1f1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.3091
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.3091

Signposting

I References (2):
I Boosted Decision Trees:

I J. Elith, J. Leathwick, and T. Hastie “A working guide to
boosted regression trees” (2008). British Ecological Society.

I CART:
I CART = Classification and Regression Trees. Breiman, Leo;

Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984).
Classification and regression trees.

I Wei-Yin Loh’s 2011 Review is popular.
I ID3: Quinlan, J. R. 1986. Induction of Decision Trees. Mach.

Learn. 1, 1 (Mar. 1986), 81-106.

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2656.2008.01390.x
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2656.2008.01390.x
https://onlinelibrary.wiley.com/doi/full/10.1002/widm.8?casa_token=zVBiCZT6d24AAAAA%3AoZIV06S8oIjh5erpzsC0yzVmMFP6ilRntX9qfzmk8KNgKr-FKbWxCkxax1biS2eP8_o5h7bzPpkD5A
https://link.springer.com/article/10.1007/BF00116251

Signposting

I In the practical we’ll implement these models in R and Python;
compare implementations, and to previous results.

I Next semester we’ll start with the “other” LDA (Latent
Dirichlet Allocation), Topic Modelling, and Modelling
Documents.

I References:
I Chapter 15 of The Elements of Statistical Learning: Data

Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

I Implement a Random Forest From Scratch in Python
I A Gentle Introduction to Random Forests at CitizenNet
I DataDive on Selecting good features
I Cosma Shalizi on Regression Trees
I Gilles Louppe PhD Thesis: Understanding Random Forests

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://machinelearningmastery.com/implement-random-forest-scratch-python/
http://blog.citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics
https://blog.datadive.net/selecting-good-features-part-iii-random-forests/
http://www.stat.cmu.edu/~cshalizi/350-2006/lecture-10.pdf
https://arxiv.org/pdf/1407.7502.pdf

