Nonparametrics and kernels

Daniel Lawson University of Bristol

Lecture 04.1 (v2.0.1)

https://x.com/miniapeur/status/1682949029297025025

Signposting

► We'll cover the following topics:

- Nonparametric statistics a birds eye view
- Transforms how to make good features
- Density estimation
- The Kernel Trick

Questions

- What is non-parametric statistics?
- Could we use a Fourier Transform in data science?
- How do we estimate density?
- Can we computationally compare in "infinite" dimensions?

Non-parametric statistics - overview

- ► Non-parametric statistics come in several flavours:
 - 1. Parameter-free hypothesis tests
 - 2. Zero-parameter representations which can be thought of as a data transformation.
 - examples include: Time-Frequency transforms, Kernel methods
 - Infinite-parameter representations which can be thought of as generalisations of parametric models.
 - examples include: Hierarchical Dirichlet Process, the Stochastic Block Model for graphs
- We covered 1 in testing. We touch on 3 later. This lecture is about 2.
- Most methods are parametric nonparametrics: it is rare that a data transformation method isn't naturally thought of with a parameter!

Transforming data

In previous practical problems we've used simple transforms to make the data easier to model:

- log-transform
- square-root/power transform
- Some data simplify greatly when transformed appropriately:
 - periodic data are simpler after taking a frequency transform
- Transformed data can be seen as feature augmentation, latent embedding, etc, depending on use.
- Generally, the goal is to make the noise additive so that it averages out.

The Basis Expansion

Many transforms are designed to exactly reproduce the data.
 These are basis expansions and are typically invertible.
 They make good feature sets if they result in a dimensionality reduction;

- that is, they lead to a useful approximation using only a few features.
- PCA is one example of this.
- There are many others...

Fourier transform

The Fourier transform is written:

$$\hat{f}(\eta) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \eta} dx$$

- The Discrete Fourier Transform (DFT) is used in practice as datasets typically have a minimum sampling rate δ.
- It is usually computed using the Fast Fourier Transform (FFT).

Consider using it for periodic data, or to look for periodicity.

- The **power** in any frequency *i* is proportional to $|\hat{f}(\eta_i)|^2$.
 - High power means this frequency is present in your data.
 - There are formal tests for "significance" of high power.

Fourier transform example

```
# Not fast unless length(x)=2^k
myx=1:(2^16) # Largest valid choice
conndata_fft=fft(conndata_ts[myx,"x"])
```

Fourier transform example

Walsh-Hadamard transform

- The Walsh-Hadamard transform is a version of the Fourier Transform that is useful for Binary data.
- It is defined recursively via the Hadamard Matrix:

$$H_0 = 1.$$

$$H_m = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} H_{m-1} & H_{m-1} \\ H_{m-1} & -H_{m-1} \end{array} \right)$$

- For N total bits, the whole matrix is of size $2^m \times 2^m = N \times N$.
- The transform is $\mathbf{w} = \mathbf{H}\mathbf{x}$.
- ▶ w can be computed efficiently with the **fast** Walsh-Hadamard transform in complexity $O(N \log(N))$.
- It was developed in encryption & signals processing but is useful to generate features in many contexts.

Walsh-Hadamard matrices

$$H_1 = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1\\ 1 & -1 \end{array} \right)$$

Walsh-Hadamard matrices

Walsh-Hadamard transform examples

Examples:

- ► 00000... -> 00000...
- ► 11111... -> +0000...
- ▶ 01010... -> +-000...
- ► 10101... -> ++000...
- ► 00010001... -> ++++000....
- i.e. the i-th bit is activated by periodicity of length i
- The details are sensitive to the "phase", i.e. exactly where in the sequence the periodicity lies.

Walsh-Hadamard transform example

Other transforms

• Other transforms can be useful. For example:

- Wavelets (time and space decomposition)
- Laplace transform
- Sine/ Cosine transforms
- Hankel transform (radial basis function)
- Polynomials

▶ ... etc

▶ All you need is a **basis function** and you have a **transform**.

Density estimation overview

- Density estimation is an extremely hard problem because it maps discrete data into a continuous estimator.
- This is only conceptually well founded if we are willing to make (strong) assumptions regarding smoothness.
- There is no way to perform an entirely data-driven analysis!
- Many popular methods are very bad if, for example, the smoothness varies by location.

Kernel density estimation (KDE)

- Let $\{\vec{x}_i\}_{i=1}^N$ be a dataset on some space (for simplicity taken as \mathbb{R}^d).
- Then the Kernel K provides the density estimate for any point y as:

$$f_{\mathbf{H}}(\vec{y}) = \frac{1}{N} \sum_{i=1}^{N} K_{\mathbf{H}} (\vec{y} - \vec{x}_i),$$

where ${f H}$ is a matrix of bandwidths.

- In other words, its a sum of independent contributions from each datapoint.
- It can be written:

$$K_{\mathbf{H}}\left(\vec{y} - \vec{x}_i\right) = \frac{1}{\det(\mathbf{H})} K\left(\mathbf{H}^{-1}(\vec{y} - \vec{x}_i)\right)$$

KDE in 1d

► In 1D:

$$f_h(\vec{y}) = \frac{1}{N} \sum_{i=1}^N K\left(\frac{\vec{y} - \vec{x}_i}{h}\right)$$

- ► Its common to use a Normal kernel $K(x) = \text{Normal}(x; \mu = 0, \sigma = 1).$
- h can be chosen by minimising the "Mean Integrated Square Error"...

• which theoretically suggests a functional form $h \propto N^{-1/5}$.

- Most density tools in packages use a reasonable default (which also depends on dimension).
 - This is appropriate for statistical inference of the density estimate at an unspecified point x.
- In practice the "right" bandwidth is a function of the question, so defaults might work poorly.
 - For EDA, we often want a smaller bandwidth to reveal potential data features

KDE Example

KDE with unique points

KDE kernels

Some important multivariate kernels:

- Spheroid Gaussian (**H** and Σ are diagonal)
- Rectangular (H is diagonal, Uniform kernel)
- Product Gaussian (H off-diagonals are products, Σ is diagonal)
- H is a parameter. It can be estimated by Cross-Validation but it is high dimensional so this is hard.

Applications of KDE

Kernel density estimates are considered important in many applications, including:

Smoothing

Clustering

Topological Data Analysis

Level set estimation

Feature Extraction

... etc!

K-Nearest neighbours

- Measuring neighbourhoods is a very important component of many applications.
- A fast way to do this is by computing k-Nearest neighbours (k-NN) for each point.
- Note the requirement for a distance measure (metric or otherwise).
- Algorithms to do this are called **nearest neighbour search**:
 - ► Linear algorithms: Check all distances for all points. *O*(*N*²) to compute the structure.
 - ► Space partitioning: KD-trees etc partition the space. O(N log(N)) but are less good in high dimensions...
 - Approximate methods: there are many great methods for this problem, which are often nearly perfect and much faster.
 Locality Sensitive Hashing is popular.

k-NN density estimation

A Density estimate using k-NN:

$$\hat{p}_{kNN}(x) = \frac{k}{N} \cdot \frac{1}{V_d R_k^d(x)}$$

where:

- d is the dimension of the space,
- k is the number of neighbours,
- N is the sample size,
- $R_k^d(x)$ is the "radius", i.e. the distance to the k-th closest neighbour of x, and
- ► V_d is the volume of a unit ball:

$$V_d = \frac{\pi^{d/2}}{\Gamma(d/2+1)}$$

So V₁ = 2, V₂ = π, V₃ = ⁴/₃π^{3/2}.
 NB Like the distance function, k is a parameter!

k-NN density estimation

```
library("TDA")
Xseq <- seq(-0.035, 0.0046, length.out=50)
Yseq <- seq(-0.009, 0.02, length.out=50)
Grid <- expand.grid(Xseq, Yseq)
klist=c(1,2,5,10,20,50)
knnlist=lapply(klist,function(k){
    KNN <- knnDE(testdata_all.svd$u[,1:2], Grid, k)
    KNNm=matrix(KNN,nrow=length(Xseq),ncol=length(Yseq))
})</pre>
```

k-NN density estimation

The Kernel trick - a Motivation

What if there is a nonlinearity in the data?

Solution: map the data into a higher dimensional space in which the relationship is (approximately) linear

The Kernel Trick

- Problem: High dimensional spaces are hard to work with and computationally costly
- Solution: Make the space implicit: all computation is done using a Kernel that uses a map φ : X → ℝⁿ for data in the original space x, y ∈ X:

$$K(x,y) = \langle \phi(x), \phi(y) \rangle$$

Kernels are any function that can be expressed as an inner product..

Kernel example

Input space $X \subseteq \mathbb{R}^2$ with the map:

$$\phi: X = (x_1, x_2) \to (x_1^2, x_2^2, \sqrt{2}x_1x_2) \in \mathbb{R}^3$$

▶ i.e. the second moments. Then:

$$\langle \phi(x), \phi(y) \rangle = \langle (x_1^2, x_2^2, \sqrt{2}x_1x_2), (y_1^2, y_2^2, \sqrt{2}y_1y_2) \rangle$$
(1)
= $(x_1^2y_1^2 + x_2^2y_2^2 + 2x_1y_1x_2y_2)$ (2)

$$(x_1y_1 + x_2y_2)^2 = \langle \mathbf{x}, \mathbf{y} \rangle, \quad (3)$$

▶ i.e. the (squared) dot product.

Kernel examples¹

▲ 1. Effect of the map $\phi(x_1, x_2) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$ (a) Input space \mathcal{X} and (b) feature space \mathcal{H} .

¹Dave Krebs' class

Kernel properties

- Kernel spaces are closed under many operations.
- Being closed under f means that if x is in the space, f(x) is also in the space.
- The operations are:
 - 1. Addition: $K(x,y) = K_1(x,y) + K_2(x,y)$
 - 2. Multiplication of a scalar: $K(x,y) = \alpha K_1(x,y)$
 - 3. Kernel Product: $K(x,y) = K_1(x,y)K_2(x,y)$
 - 4. Functional Product: K(x,y) = f(x)f(y)
 - 5. Kernel of a Kernel: $K(x,y) = K_3(\phi(x),\phi(y))$
 - 6. Matrix operation: $K(x,y) = x^T B y$

It is therefore possible to make modular kernels.

Gram Matrix

The Gram matrix is used by many methods exploiting the Kernel Trick:

$$\mathbf{K} \equiv \left(k(x_i, x_j)\right)_{ij}, \qquad \forall i, j$$

- This is a pre-computation: we compute the kernel between all pairs once, at the beginning, from which all subsequent computations follow.
- Gram matrices should be positive semi-definite. You can do the theory, or just check...
- The resulting space is called a Reproducing Kernel Hilbert Space (RKHS).
- It provides several important properties² and underpins many applications...

²Hofmann, Schoelkopf, & Smola (2008) "Kernel Methods in Machine Learning" (Ann. Stat.)

Important applications (later)

- Support Vector Machines
- Kernel Regression
- Kernel models on graphs (random walk, etc)
- Causal inference (Markov graphs)
- Kernel PCA

Kernel PCA

For illustration we'll consider kernel PCA. Map $x_i \in \mathbb{R}^d$ to an arbitrary feature space $\phi(x_i) \in \mathbb{R}^n$ using the Gram Matrix:

$$K(x,y) = \phi(x)^T \phi(y)$$

For which we'll consider the eigenvector equation for $v \in \mathbb{R}^n$:

$$Cv = \lambda v$$

▶ with the usual properties for the mean $\mu = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i) = 0$ and covariance $C = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i) \phi(x_i)^T$.

Kernel PCA continued

- Eigenvectors are linear combinations of the features: $v = \sum_{i=1}^{n} \alpha_i \phi(x_i).$
- It turns out that kernel PCA requires only solving the regular eigenvector problem for the eigenvalues α_i of a Kernel matrix K̃:

$$\tilde{K}\alpha_i = \lambda_i \alpha_i$$

Because the feature space may not be mean centred, $\tilde{K} \neq K$ in general but is simply related:

$$\tilde{K} = K - 2\mathbf{1}_{1/n}K + \mathbf{1}_{1/n}K\mathbf{1}_{1/n}$$

• where $\mathbf{1}_{1/n}$ is a vector of length n with elements 1/n.

Kernel PCA example

► See ³.

library("kernlab")
kpcvanilla=kpca(~.,data=testdata_sample,
 kernel="vanilladot",kpar=list(),features=4)
kpc=kpca(~.,data=testdata_sample,
 kernel="rbfdot",kpar=list(sigma=0.02),features=4)
kpclaplace=kpca(~.,data=testdata_sample,
 kernel="laplacedot",kpar=list(),features=10)
kpcpoly=kpca(~.,data=testdata_sample,
 kernel="polydot",kpar=list(),features=10)

plot(kpc@eig) # Plot eigenvalues

³Hofmann, Schoelkopf, & Smola (2008) "Kernel Methods in Machine Learning" (Ann. Stat.)

Kernel PCA example

Example Kernels:

 \blacktriangleright Linear Kernel: $k(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{y} + c$ The regular dot product. • Gaussian Kernel: $k(\mathbf{x}, \mathbf{y}) = \exp\left(\frac{-|\mathbf{x}-\mathbf{y}|^2}{2\sigma^2}\right) + c$ Very susceptible to outliers due to the "narrow tails" • Exponential Kernel: $k(\mathbf{x}, \mathbf{y}) = \exp\left(\frac{-|\mathbf{x}-\mathbf{y}|}{2\sigma^2}\right) + c$ Also called the radial kernel Related to the Laplacian kernel **>** Power Kernel: $k(\mathbf{x}, \mathbf{y}) = -|\mathbf{x} - \mathbf{y}|^p$ conditionally positive definite, so needs extra care ▶ Log Kernel: $k(\mathbf{x}, \mathbf{v}) = -\log(|\mathbf{x} - \mathbf{v}| + 1)$ conditionally positive definite, so needs extra care Histogram Intersection Kernel Is and so on!

Thoughts on kernels

- The choice of Kernel is a parameter
- Which may itself contain additional parameters, e.g. bandwidths
- ▶ How to estimate? Evaluating performance requires calculating the whole N² matrix so it will be slow to iterate!
- Machine Learning thrives on usage cases where these decisions are either relatively unimportant or determined by the method.
- As we've seen, adaptive kernels such as nearest neighbour density estimation may be more robust than parametric kernels. Similar guidance holds here.

Reflection

What role could transforms play in classification?

How do you know if they are working?

- How do these transforms generalise? What parameters does this introduce?
- What is the benefit of the Kernel Trick? What is the cost?
 - How would you apply it in practice?
- When should you estimate density by KDE vs KNN?
 - What does the density estimate at a point mean?
 - How could it be used in classification?
 - What are its other uses?

Signposting

- Transforms are clearly linked to PCA from Block 03
- Further reading for nonparametric statistics:
 - Nonparametric Statistics by Eduardo García Portugués
 - Basis Expansions: Chapter 5 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
- ► Further reading for Kernel Density Estimation:
 - Kernel Smoothing: Chapter 6 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
 - For kNN Yen-Chi Chen's notes on kNN and the Basis

Signposting (2)

For the Kernel Trick Dave Krebs' Intro to Kernels

- ► For the Kernel PCA: Rita Osadchi's Kernel PCA notes
- Hofmann, Schoelkopf, & Smola (2008) "Kernel Methods in Machine Learning" (Ann. Stat.)
- Schoelkopf B., A. Smola, K.-R. Mueller (1998) "Nonlinear component analysis as a kernel eigenvalue problem".