
Nonparametrics and kernels

Daniel Lawson University of Bristol

Lecture 04.1.1 (v2.0.0)

Signposting

I We’ll cover the following topics:
I Nonparametric statistics - a birds eye view
I Transforms - how to make good features
I Density estimation
I The Kernel Trick

Questions

I What is non-parametric statistics?
I Could we use a Fourier Transform in data science?
I How do we estimate density?
I Can we computationally compare in “infinite” dimensions?

Non-parametric statistics - overview

I Non-parametric statistics come in several flavours:
1. Parameter-free hypothesis tests
2. Zero-parameter representations which can be thought of as a

data transformation.
I examples include: Time-Frequency transforms, Kernel methods
3. Infinite-parameter representations which can be thought of as

generalisations of parametric models.
I examples include: Hierarchical Dirichlet Process, the Stochastic

Block Model for graphs
I We covered 1 in testing. We touch on 3 later. This lecture is

about 2.
I Most methods are parametric nonparametrics: it is rare that

a data transformation method isn’t naturally thought of with a
parameter!

Transforming data

I In previous practical problems we’ve used simple transforms to
make the data easier to model:
I log-transform
I square-root/power transform

I Some data simplify greatly when transformed appropriately:
I periodic data are simpler after taking a frequency transform

I Transformed data can be seen as feature augmentation, latent
embedding, depending on use.

I Generally, the goal is to make the noise additive so that it
averages out.

The Basis Expansion

I Most transforms we consider are designed to exactly reproduce
the data.

I These are basis expansions and are typically invertible.
I They make good feature sets if they result in a dimensionality

reduction;
I that is, they lead to a useful approximation using only a few

features.
I PCA is one example of this.
I There are many others. . .

Fourier transform

I The Fourier transform is written:

f̂(η) =
∫ ∞
−∞

f(x)e−2πixηdx

I The Discrete Fourier Transform (DFT) is used in practice as
datasets typically have a minimum sampling rate δ.

I It is usually computed using the Fast Fourier Transform
(FFT).

I Consider using it for periodic data, or to look for periodicity.
I The power in any frequency i is proportional to |f̂(ηi)|2.

I High power means this frequency is present in your data.
I There are formal tests for “significance” of high power.

Fourier transform example

conndata_ts=data.frame(t=seq(min(conndata$ts),
max(conndata$ts),by=1),x=0)

for(i in 1:dim(conndata)[1]){
conndata_ts[ceiling(conndata[i,"ts"]-

conndata_ts[1,"t"]),"x"] =
conndata_ts[ceiling(conndata[i,"ts"]-

conndata_ts[1,"t"]),"x"] + 1
}
Not fast unless length(x)=2ˆk
myx=1:(2ˆ16) # Largest valid choice
conndata_fft=fft(conndata_ts[myx,"x"])

Fourier transform example

Walsh-Hadamard transform

I The Walsh-Hadamard transform is a version of the Fourier
Transform that is useful for Binary data.

I It is defined recursively via the Hadamard Matrix:

H0 = 1,

Hm = 1√
2

(
Hm−1 Hm−1
Hm−1 −Hm−1

)
I For N total bits, the whole matrix is of size 2m× 2m = N ×N .
I The transform is w = Hx.
I w can be computed efficiently with the fast Walsh-Hadamard

transform in complexity O(N log(N)).
I It was developed in encryption & signals processing but is

useful to generate features in many contexts.

Walsh-Hadamard matrices

H1 = 1√
2

(
1 1
1 −1

)

H2 = 1
2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

Walsh-Hadamard matrices

H1 = 1√
2

(
1 1
1 −1

)

H2 = 1
2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

Walsh-Hadamard transform examples

I Examples:
I 00000. . . -> 00000. . .
I 11111. . . -> +0000. . .
I 01010. . . -> +-000. . .
I 10101. . . -> ++000. . .
I 00010001. . . -> ++++000. . . .

I i.e. the i-th bit is activated by periodicity of length i
I The details are sensitive to the “phase”, i.e. exactly where in

the sequence the periodicity lies.

Walsh-Hadamard transform example

Other transforms

I Other transforms can be useful. For example:
I Wavelets (time and space decomposition)
I Laplace transform
I Sine/ Cosine transforms
I Hankel transform (radial basis function)
I Polynomials
I . . . etc

I All you need is a basis function and you have a transform.

Density estimation overview

I Density estimation is an extremely hard problem because it
maps discrete data into a continuous estimator.

I This is only conceptually well founded if we are willing to make
(strong) assumptions regarding smoothness.

I There is no way to perform an entirely data-driven analysis!
I Many popular methods are very bad if, for example, the

smoothness varies by location.

Kernel density estimation (KDE)

I Let {~xi}Ni=1 be a dataset on some space (for simplicity taken as
Rd).

I Then the Kernel K provides the density estimate for any point
~y as:

fH(~y) = 1
N

N∑
i=1

KH (~y − ~xi) ,

where H is a matrix of bandwidths.
I In other words, its a sum of independent contributions from

each datapoint.
I It can be written:

KH (~y − ~xi) = 1
det(H)K

(
H−1(~y − ~xi)

)

KDE in 1d
I In 1D:

fh(~y) = 1
N

N∑
i=1

K

(
~y − ~xi
h

)
I Its common to use a Normal kernel

K(x) = Normal(x;µ = 0, σ = 1).
I h can be chosen by minimising the “Mean Integrated Square

Error”. . .
I which theoretically suggests a functional form h ∝ N−1/5.

I Most density tools in packages use a reasonable default (which
also depends on dimension).
I This is appropriate for statistical inference of the density

estimate at an unspecified point x.
I In practice the “right” bandwidth is a function of the

question, so defaults might work poorly.
I For EDA, we often want a smaller bandwidth to reveal

potential data features

KDE Example

KDE with unique points

KDE kernels

I Some important multivariate kernels:
I Spheroid Gaussian (H and Σ are diagonal)
I Rectangular (H is diagonal, Uniform kernel)
I Product Gaussian (H off-diagonals are products, Σ is diagonal)

I H is a parameter. It can be estimated by Cross-Validation but
it is high dimensional so this is hard.

Applications of KDE

I Kernel density estimates are considered important in many
applications, including:
I Smoothing
I Clustering
I Topological Data Analysis
I Level set estimation
I Feature Extraction
I . . . etc!

K-Nearest neighbours

I Measuring neighbourhoods is a very important component of
many applications.

I A fast way to do this is by computing k-Nearest neighbours
(k-NN) for each point.

I Note the requirement for a distance measure (metric or
otherwise).

I Algorithms to do this are called nearest neighbour search:
I Linear algorithms: Check all distances for all points. O(N2)

to compute the structure.
I Space partitioning: KD-trees etc partition the space.

O(N log(N)) but are less good in high dimensions. . .
I Approximate methods: there are many great methods for this

problem, which are often nearly perfect and much faster.
Locality Sensitive Hashing is popular.

k-NN density estimation
I A Density estimate using k-NN:

p̂kNN (x) = k

N
· 1
VdR

d
k(x)

I where:
I d is the dimension of the space,
I k is the number of neighbours,
I N is the sample size,
I Rd

k(x) is the “radius”, i.e. the distance to the k-th closest
neighbour of x, and

I Vd is the volume of a unit ball:

Vd = πd/2

Γ(d/2 + 1)

I so V1 = 2, V2 = π, V3 = 4
3π

3/2.
I NB Like the distance function, k is a parameter!

k-NN density estimation

library("TDA")
Xseq <- seq(-0.035, 0.0046, length.out=50)
Yseq <- seq(-0.009, 0.02, length.out=50)
Grid <- expand.grid(Xseq, Yseq)

klist=c(1,2,5,10,20,50)
knnlist=lapply(klist,function(k){

KNN <- knnDE(testdata_all.svd$u[,1:2], Grid, k)
KNNm=matrix(KNN,nrow=length(Xseq),ncol=length(Yseq))

})

k-NN density estimation

The Kernel trick - a Motivation

I What if there is a nonlinearity in the data?
I Solution: map the data into a higher dimensional space in

which the relationship is (approximately) linear

The Kernel Trick

I Problem: High dimensional spaces are hard to work with and
computationally costly

I Solution: Make the space implicit: all computation is done
using a Kernel that uses a map φ : X → Rn for data in the
original space x, y ∈ X:

K(x, y) = 〈φ(x), φ(y)〉

I Kernels are any function that can be expressed as an inner
product..

Kernel example

I Input space X ⊆ R2 with the map:

φ : X = (x1, x2)→ (x2
1, x

2
2,
√

2x1x2) ∈ R3

I i.e. the second moments. Then:

〈φ(x), φ(y)〉 = 〈(x2
1, x

2
2,
√

2x1x2), (y2
1, y

2
2,
√

2y1y2)〉 (1)
= (x2

1y
2
1 + x2

2y
2
2 + 2x1y1x2y2) (2)

= (x1y1 + x2y2)2 = 〈x,y〉, (3)

I i.e. the (squared) dot product.

Kernel examples1

1Dave Krebs’ class

https://people.cs.pitt.edu/~milos/courses/cs3750-Fall2007/lectures/class-kernels.pdf

Kernel properties

I Kernel spaces are closed under many operations.
I Being closed under f means that if x is in the space, f(x) is

also in the space.
I The operations are:

1. Addition: K(x, y) = K1(x, y) +K2(x, y)
2. Multiplication of a scalar: K(x, y) = αK1(x, y)
3. Kernel Product: K(x, y) = K1(x, y)K2(x, y)
4. Functional Product: K(x, y) = f(x)f(y)
5. Kernel of a Kernel: K(x, y) = K3(φ(x), φ(y))
6. Matrix operation: K(x, y) = xTBy

I It is therefore possible to make modular kernels.

Gram Matrix

I The Gram matrix is used by many methods exploiting the
Kernel Trick:

K ≡ (k(xi, xj))ij , ∀i, j

I This is a pre-computation: we compute the kernel between all
pairs once, at the beginning, from which all subsequent
computations follow.

I Gram matrices should be positive semi-definite. You can do the
theory, or just check. . .

I The resulting space is called a Reproducing Kernel Hilbert
Space (RKHS).

I It provides several important properties2 and underpins many
applications. . .

2Hofmann, Schoelkopf, & Smola (2008) “Kernel Methods in Machine
Learning” (Ann. Stat.)

https://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/materials/0701907.pdf
https://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/materials/0701907.pdf

Important applications (later)

I Support Vector Machines
I Kernel Regression
I Kernel models on graphs (random walk, etc)
I Causal inference (Markov graphs)
I Kernel PCA

Kernel PCA

I For illustration we’ll consider kernel PCA. Map xi ∈ Rd to an
arbitrary feature space φ(xi) ∈ Rn using the Gram Matrix:

K(x, y) = φ(x)Tφ(y)

I For which we’ll consider the eigenvector equation for v ∈ Rn:

Cv = λv

I with the usual properties for the mean µ = 1
n

∑n
i=1 φ(xi) = 0

and covariance C = 1
n

∑n
i=1 φ(xi)φ(xi)T .

Kernel PCA continued

I Eigenvectors are linear combinations of the features:
v =

∑n
i=1 αiφ(xi).

I It turns out that kernel PCA requires only solving the regular
eigenvector problem for the eigenvalues αi of a Kernel
matrix K̃:

K̃αi = λiαi

Because the feature space may not be mean centred, K̃ 6= K
in general but is simply related:

K̃ = K − 211/nK + 11/nK11/n

I where 11/n is a vector of length n with elements 1/n.

Kernel PCA example

I See 3.
library("kernlab")
kpcvanilla=kpca(~.,data=testdata_sample,

kernel="vanilladot",kpar=list(),features=4)
kpc=kpca(~.,data=testdata_sample,

kernel="rbfdot",kpar=list(sigma=0.02),features=4)
kpclaplace=kpca(~.,data=testdata_sample,

kernel="laplacedot",kpar=list(),features=10)
kpcpoly=kpca(~.,data=testdata_sample,

kernel="polydot",kpar=list(),features=10)

plot(kpc@eig) # Plot eigenvalues

3Hofmann, Schoelkopf, & Smola (2008) “Kernel Methods in Machine
Learning” (Ann. Stat.)

https://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/materials/0701907.pdf
https://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/materials/0701907.pdf

Kernel PCA example

Example Kernels:

I Linear Kernel: k(x,y) = xTy + c
I The regular dot product.

I Gaussian Kernel: k(x,y) = exp
(
−|x−y|2

2σ2

)
+ c

I Very susceptible to outliers due to the “narrow tails”
I Exponential Kernel: k(x,y) = exp

(
−|x−y|

2σ2

)
+ c

I Also called the radial kernel
I Related to the Laplacian kernel

I Power Kernel: k(x,y) = −|x− y|p
I conditionally positive definite, so needs extra care

I Log Kernel: k(x,y) = −log(|x− y|+1)
I conditionally positive definite, so needs extra care

I Histogram Intersection Kernel
I . . . and so on!

http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/

Thoughts on kernels

I The choice of Kernel is a parameter
I Which may itself contain additional parameters,

e.g. bandwidths
I How to estimate? Evaluating performance requires calculating

the whole N2 matrix so it will be slow to iterate!
I Machine Learning thrives on usage cases where these decisions

are either relatively unimportant or determined by the
method.

I As we’ve seen, adaptive kernels such as nearest neighbour
density estimation may be more robust than parametric
kernels. Similar guidance holds here.

Reflection

I What role could transforms play in classification?
I How do you know if they are working?

I How do these transforms generalise? What parameters does
this introduce?

I What is the benefit of the Kernel Trick? What is the cost?
I How would you apply it in practice?

I When should you estimate density by KDE vs KNN?
I What does the density estimate at a point mean?
I How could it be used in classification?
I What are its other uses?

Signposting

I Transforms are clearly linked to PCA from Block 03
I Further reading for nonparametric statistics:

I Nonparametric Statistics by Eduardo García Portugués
I Basis Expansions: Chapter 5 of The Elements of Statistical

Learning: Data Mining, Inference, and Prediction (Friedman,
Hastie and Tibshirani).

I Further reading for Kernel Density Estimation:
I Kernel Smoothing: Chapter 6 of The Elements of Statistical

Learning: Data Mining, Inference, and Prediction (Friedman,
Hastie and Tibshirani).

I For kNN Yen-Chi Chen’s notes on kNN and the Basis

https://bookdown.org/egarpor/NP-UC3M/
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://faculty.washington.edu/yenchic/18W_425/Lec7_knn_basis.pdf

Signposting (2)

I For the Kernel Trick Dave Krebs’ Intro to Kernels
I For the Kernel PCA: Rita Osadchi’s Kernel PCA notes
I Hofmann, Schoelkopf, & Smola (2008) “Kernel Methods in

Machine Learning” (Ann. Stat.)
I Schoelkopf B., A. Smola, K.-R. Mueller (1998) “Nonlinear

component analysis as a kernel eigenvalue problem”.

https://people.cs.pitt.edu/~milos/courses/cs3750-Fall2007/lectures/class-kernels.pdf
http://www.cs.haifa.ac.il/~rita/uml_course/lectures/KPCA.pdf
https://projecteuclid.org/journals/annals-of-statistics/volume-36/issue-3/Kernel-methods-in-machine-learning/10.1214/009053607000000677.full
https://projecteuclid.org/journals/annals-of-statistics/volume-36/issue-3/Kernel-methods-in-machine-learning/10.1214/009053607000000677.full
https://www.mlpack.org/papers/kpca.pdf
https://www.mlpack.org/papers/kpca.pdf

