Nonparametrics and kernels

Daniel Lawson University of Bristol

Lecture 04.1.1 (v2.0.0)

Signposting

$>$ We'll cover the following topics:

- Nonparametric statistics - a birds eye view

Transforms - how to make good features

- Density estimation
- The Kernel Trick

Questions

What is non-parametric statistics?

- Could we use a Fourier Transform in data science?
- How do we estimate density?
- Can we computationally compare in "infinite" dimensions?

Non-parametric statistics - overview

- Non-parametric statistics come in several flavours:

1. Parameter-free hypothesis tests
2. Zero-parameter representations which can be thought of as a data transformation.

- examples include: Time-Frequency transforms, Kernel methods

3. Infinite-parameter representations which can be thought of as generalisations of parametric models.

- examples include: Hierarchical Dirichlet Process, the Stochastic Block Model for graphs
- We covered 1 in testing. We touch on 3 later. This lecture is about 2.
- Most methods are parametric nonparametrics: it is rare that a data transformation method isn't naturally thought of with a parameter!

Transforming data

- In previous practical problems we've used simple transforms to make the data easier to model:
- log-transform
- square-root/power transform
- Some data simplify greatly when transformed appropriately:
- periodic data are simpler after taking a frequency transform
- Transformed data can be seen as feature augmentation, latent embedding, depending on use.
- Generally, the goal is to make the noise additive so that it averages out.

The Basis Expansion

- Most transforms we consider are designed to exactly reproduce the data.
- These are basis expansions and are typically invertible.
- They make good feature sets if they result in a dimensionality reduction;
that is, they lead to a useful approximation using only a few features.
- PCA is one example of this.
- There are many others...

Fourier transform

- The Fourier transform is written:

$$
\hat{f}(\eta)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \eta} d x
$$

- The Discrete Fourier Transform (DFT) is used in practice as datasets typically have a minimum sampling rate δ.
- It is usually computed using the Fast Fourier Transform (FFT).
- Consider using it for periodic data, or to look for periodicity.
- The power in any frequency i is proportional to $\left|\hat{f}\left(\eta_{i}\right)\right|^{2}$.
- High power means this frequency is present in your data.
- There are formal tests for "significance" of high power.

Fourier transform example

```
conndata_ts=datia,firame(t=seg (nin (conndata$ts),
    (conndata$ts), by=1), x=0)
for(i in 1:din(conndata)[1]){
    conndata_ts[ceilimg(conndata[i,"ts"]-
    conndata_ts[1,"t"]),"x"] =
    conndata_ts[ceiling(conndata[i,"ts"]-
    conndata_ts[1,"t"]),"x"] + 1
}
# Not fast unless length(x)=2^\hbar
myx=1:(2^16) # Largest valid choice
conndata_fft=ffi (conndata_ts[myx,"x"])
```


Fourier transform example

a) Time domain

b) Frequency domain

Walsh-Hadamard transform

- The Walsh-Hadamard transform is a version of the Fourier Transform that is useful for Binary data.
- It is defined recursively via the Hadamard Matrix:

$$
\begin{gathered}
H_{0}=1 \\
H_{m}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
H_{m-1} & H_{m-1} \\
H_{m-1} & -H_{m-1}
\end{array}\right)
\end{gathered}
$$

$>$ For N total bits, the whole matrix is of size $2^{m} \times 2^{m}=N \times N$.

- The transform is $\mathbf{w}=\mathbf{H x}$.
- w can be computed efficiently with the fast Walsh-Hadamard transform in complexity $O(N \log (N))$.
- It was developed in encryption \& signals processing but is useful to generate features in many contexts.

Walsh-Hadamard matrices

$$
H_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Walsh-Hadamard matrices

$$
\begin{gathered}
H_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
H_{2}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
\end{gathered}
$$

Walsh-Hadamard transform examples

- Examples:
- 00000... -> 00000...
- 11111... -> +0000...
- 01010... -> +-000...
- 10101... -> ++000...
- 00010001... -> ++++000....
- i.e. the i-th bit is activated by periodicity of length i
- The details are sensitive to the "phase", i.e. exactly where in the sequence the periodicity lies.

Walsh-Hadamard transform example

Other transforms

- Other transforms can be useful. For example:
- Wavelets (time and space decomposition)
- Laplace transform
- Sine/ Cosine transforms
- Hankel transform (radial basis function)
- Polynomials
> ... etc
- All you need is a basis function and you have a transform.

Density estimation overview

- Density estimation is an extremely hard problem because it maps discrete data into a continuous estimator.
- This is only conceptually well founded if we are willing to make (strong) assumptions regarding smoothness.
There is no way to perform an entirely data-driven analysis!
- Many popular methods are very bad if, for example, the smoothness varies by location.

Kernel density estimation (KDE)

Let $\left\{\vec{x}_{i}\right\}_{i=1}^{N}$ be a dataset on some space (for simplicity taken as \mathbb{R}^{d}).

- Then the Kernel K provides the density estimate for any point \vec{y} as:

$$
f_{\mathbf{H}}(\vec{y})=\frac{1}{N} \sum_{i=1}^{N} K_{\mathbf{H}}\left(\vec{y}-\vec{x}_{i}\right),
$$

where \mathbf{H} is a matrix of bandwidths.

- In other words, its a sum of independent contributions from each datapoint.
- It can be written:

$$
K_{\mathbf{H}}\left(\vec{y}-\vec{x}_{i}\right)=\frac{1}{\operatorname{det}(\mathbf{H})} K\left(\mathbf{H}^{-1}\left(\vec{y}-\vec{x}_{i}\right)\right)
$$

KDE in 1d

$>\ln 1 \mathrm{D}:$

$$
f_{h}(\vec{y})=\frac{1}{N} \sum_{i=1}^{N} K\left(\frac{\vec{y}-\vec{x}_{i}}{h}\right)
$$

- Its common to use a Normal kernel $K(x)=\operatorname{Normal}(x ; \mu=0, \sigma=1)$.
- h can be chosen by minimising the "Mean Integrated Square Error". . .
- which theoretically suggests a functional form $h \propto N^{-1 / 5}$.
- Most density tools in packages use a reasonable default (which also depends on dimension).
- This is appropriate for statistical inference of the density estimate at an unspecified point x.
- In practice the "right" bandwidth is a function of the question, so defaults might work poorly.
- For EDA, we often want a smaller bandwidth to reveal potential data features

KDE Example

KDE with unique points

KDE kernels

- Some important multivariate kernels:
- Spheroid Gaussian (H and Σ are diagonal)
- Rectangular (H is diagonal, Uniform kernel)
- Product Gaussian (H off-diagonals are products, Σ is diagonal)
- \mathbf{H} is a parameter. It can be estimated by Cross-Validation but it is high dimensional so this is hard.

Applications of KDE

- Kernel density estimates are considered important in many applications, including:
- Smoothing
- Clustering
- Topological Data Analysis
- Level set estimation
- Feature Extraction
- ... etc!

K-Nearest neighbours

- Measuring neighbourhoods is a very important component of many applications.
- A fast way to do this is by computing k-Nearest neighbours (k-NN) for each point.
> Note the requirement for a distance measure (metric or otherwise).
- Algorithms to do this are called nearest neighbour search:
- Linear algorithms: Check all distances for all points. $O\left(N^{2}\right)$ to compute the structure.
- Space partitioning: KD-trees etc partition the space. $O(N \log (N))$ but are less good in high dimensions...
- Approximate methods: there are many great methods for this problem, which are often nearly perfect and much faster. Locality Sensitive Hashing is popular.

k-NN density estimation

- A Density estimate using k-NN:

$$
\hat{p}_{k N N}(x)=\frac{k}{N} \cdot \frac{1}{V_{d} R_{k}^{d}(x)}
$$

- where:
$\square d$ is the dimension of the space,
- k is the number of neighbours,
- N is the sample size,
- $R_{k}^{d}(x)$ is the "radius", i.e. the distance to the k-th closest neighbour of x, and
- V_{d} is the volume of a unit ball:

$$
V_{d}=\frac{\pi^{d / 2}}{\Gamma(d / 2+1)}
$$

$>$ so $V_{1}=2, V_{2}=\pi, V_{3}=\frac{4}{3} \pi^{3 / 2}$.
\checkmark NB Like the distance function, k is a parameter!

k-NN density estimation

```
            ("TDA")
Xseq <- sec(-0.035, 0.0046, length.out=50)
Yseq <- seq(-0.009, 0.02, length.out=50)
Grid <- expand.graid(Xseq, Yseq)
klist=(1, 2,5,10,20,50)
knnlist=lappll(klist,function(k){
    KNN <- kamDE(testdata_all.svd$u[,1:2], Grid, k)
    KNNm=mathin(KNN,nrow=length(Xseq),ncol=length(Yseq))
})
```


k-NN density estimation

The Kernel trick - a Motivation

- What if there is a nonlinearity in the data?
- Solution: map the data into a higher dimensional space in which the relationship is (approximately) linear

The Kernel Trick

- Problem: High dimensional spaces are hard to work with and computationally costly
- Solution: Make the space implicit: all computation is done using a Kernel that uses a map $\phi: X \rightarrow \mathbb{R}^{n}$ for data in the original space $x, y \in X$:

$$
K(x, y)=\langle\phi(x), \phi(y)\rangle
$$

- Kernels are any function that can be expressed as an inner product..

Kernel example

- Input space $X \subseteq \mathbb{R}^{2}$ with the map:

$$
\phi: X=\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right) \in \mathbb{R}^{3}
$$

i.e. the second moments. Then:

$$
\begin{align*}
\langle\phi(x), \phi(y)\rangle & = & \left\langle\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right),\left(y_{1}^{2}, y_{2}^{2}, \sqrt{2} y_{1} y_{2}\right)\right\rangle \tag{1}\\
& = & \left(x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} y_{1} x_{2} y_{2}\right) \tag{2}\\
& = & \left(x_{1} y_{1}+x_{2} y_{2}\right)^{2}=\langle\mathbf{x}, \mathbf{y}\rangle, \tag{3}
\end{align*}
$$

- i.e. the (squared) dot product.

Kernel examples ${ }^{1}$

(a)

(b)
Δ 1. Effect of the $\operatorname{map} \phi\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)$ (a) Input space \mathcal{X} and (b) feature space \mathcal{H}.

Kernel properties

- Kernel spaces are closed under many operations.
- Being closed under f means that if x is in the space, $f(x)$ is also in the space.
- The operations are:

1. Addition: $K(x, y)=K_{1}(x, y)+K_{2}(x, y)$
2. Multiplication of a scalar: $K(x, y)=\alpha K_{1}(x, y)$
3. Kernel Product: $K(x, y)=K_{1}(x, y) K_{2}(x, y)$
4. Functional Product: $K(x, y)=f(x) f(y)$
5. Kernel of a Kernel: $K(x, y)=K_{3}(\phi(x), \phi(y))$
6. Matrix operation: $K(x, y)=x^{T} B y$

- It is therefore possible to make modular kernels.

Gram Matrix

- The Gram matrix is used by many methods exploiting the Kernel Trick:

$$
\mathbf{K} \equiv\left(k\left(x_{i}, x_{j}\right)\right)_{i j}, \quad \forall i, j
$$

- This is a pre-computation: we compute the kernel between all pairs once, at the beginning, from which all subsequent computations follow.
- Gram matrices should be positive semi-definite. You can do the theory, or just check. .
- The resulting space is called a Reproducing Kernel Hilbert Space (RKHS).
- It provides several important properties ${ }^{2}$ and underpins many applications. . .

[^0]
Important applications (later)

- Support Vector Machines
- Kernel Regression
- Kernel models on graphs (random walk, etc)
- Causal inference (Markov graphs)
- Kernel PCA

Kernel PCA

- For illustration we'll consider kernel PCA. Map $x_{i} \in \mathbb{R}^{d}$ to an arbitrary feature space $\phi\left(x_{i}\right) \in \mathbb{R}^{n}$ using the Gram Matrix:

$$
K(x, y)=\phi(x)^{T} \phi(y)
$$

- For which we'll consider the eigenvector equation for $v \in \mathbb{R}^{n}$:

$$
C v=\lambda v
$$

- with the usual properties for the mean $\mu=\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)=0$ and covariance $C=\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right) \phi\left(x_{i}\right)^{T}$.

Kernel PCA continued

- Eigenvectors are linear combinations of the features: $v=\sum_{i=1}^{n} \alpha_{i} \phi\left(x_{i}\right)$.
- It turns out that kernel PCA requires only solving the regular eigenvector problem for the eigenvalues α_{i} of a Kernel matrix \tilde{K} :

$$
\tilde{K} \alpha_{i}=\lambda_{i} \alpha_{i}
$$

Because the feature space may not be mean centred, $\tilde{K} \neq K$ in general but is simply related:

$$
\tilde{K}=K-2 \mathbf{1}_{1 / n} K+\mathbf{1}_{1 / n} K 1_{1 / n}
$$

where $1_{1 / n}$ is a vector of length n with elements $1 / n$.

Kernel PCA example

- See ${ }^{3}$.
("kernlab")
kpcvanilla=kpca(. . data=testdata_sample, kernel="vanilladot",kpar= (is (),features=4)
kpc= ppa (~., data=testdata_sample,
kernel="rbfdot", kpar= (sigma=0.02),features=4)
kpclaplace=kpca (~.,data=testdata_sample, kernel="laplacedot",kpar= (),features=10)
kpcpoly=kpa (\sim.,data=testdata_sample,
kernel="polydot",kpar= (is),features=10)
(kpc@eig) \# Plot eigenvalues
${ }^{3}$ Hofmann, Schoelkopf, \& Smola (2008) "Kernel Methods in Machine
Learning" (Ann. Stat.)

Kernel PCA example

Radial

Laplace

Polynomial

Example Kernels:

- Linear Kernel: $k(\mathbf{x}, \mathbf{y})=\mathbf{x}^{T} \mathbf{y}+c$
- The regular dot product.
- Gaussian Kernel: $k(\mathbf{x}, \mathbf{y})=\exp \left(\frac{-|\mathbf{x}-\mathbf{y}|^{2}}{2 \sigma^{2}}\right)+c$
- Very susceptible to outliers due to the "narrow tails"
- Exponential Kernel: $k(\mathbf{x}, \mathbf{y})=\exp \left(\frac{-|\mathbf{x}-\mathbf{y}|}{2 \sigma^{2}}\right)+c$
- Also called the radial kernel
- Related to the Laplacian kernel
- Power Kernel: $k(\mathbf{x}, \mathbf{y})=-|\mathbf{x}-\mathbf{y}|^{p}$
- conditionally positive definite, so needs extra care
$>$ Log Kernel: $k(\mathbf{x}, \mathbf{y})=-\log (|\mathbf{x}-\mathbf{y}|+1)$
- conditionally positive definite, so needs extra care
- Histogram Intersection Kernel

Thoughts on kernels

- The choice of Kernel is a parameter
- Which may itself contain additional parameters, e.g. bandwidths
- How to estimate? Evaluating performance requires calculating the whole N^{2} matrix so it will be slow to iterate!
- Machine Learning thrives on usage cases where these decisions are either relatively unimportant or determined by the method.
- As we've seen, adaptive kernels such as nearest neighbour density estimation may be more robust than parametric kernels. Similar guidance holds here.

Reflection

- What role could transforms play in classification?
- How do you know if they are working?
- How do these transforms generalise? What parameters does this introduce?
- What is the benefit of the Kernel Trick? What is the cost?
- How would you apply it in practice?
- When should you estimate density by KDE vs KNN?
- What does the density estimate at a point mean?
- How could it be used in classification?

What are its other uses?

Signposting

- Transforms are clearly linked to PCA from Block 03
- Further reading for nonparametric statistics:
- Nonparametric Statistics by Eduardo García Portugués
- Basis Expansions: Chapter 5 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
- Further reading for Kernel Density Estimation:
- Kernel Smoothing: Chapter 6 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
- For kNN Yen-Chi Chen's notes on kNN and the Basis

Signposting (2)

- For the Kernel Trick Dave Krebs' Intro to Kernels
- For the Kernel PCA: Rita Osadchi's Kernel PCA notes
- Hofmann, Schoelkopf, \& Smola (2008) "Kernel Methods in Machine Learning" (Ann. Stat.)
- Schoelkopf B., A. Smola, K.-R. Mueller (1998) "Nonlinear component analysis as a kernel eigenvalue problem".

[^0]: ${ }^{2}$ Hofmann, Schoelkopf, \& Smola (2008) "Kernel Methods in Machine Learning" (Ann. Stat.)

