Nonparametrics and kernels

Daniel Lawson University of Bristol

Lecture 04.1 (v2.0.1)

https://x.com/miniapeur/status/1682949029297025025

Signposting

» We'll cover the following topics:
» Nonparametric statistics - a birds eye view
» Transforms - how to make good features

» Density estimation
» The Kernel Trick

Questions

» What is non-parametric statistics?

» Could we use a Fourier Transform in data science?

» How do we estimate density?

» Can we computationally compare in “infinite” dimensions?

Non-parametric statistics - overview

» Non-parametric statistics come in several flavours:

1. Parameter-free hypothesis tests
2. Zero-parameter representations which can be thought of as a
data transformation.

» examples include: Time-Frequency transforms, Kernel methods

3. Infinite-parameter representations which can be thought of as
generalisations of parametric models.

» examples include: Hierarchical Dirichlet Process, the Stochastic
Block Model for graphs
» We covered 1 in testing. We touch on 3 later. This lecture is
about 2.
> Most methods are parametric nonparametrics: it is rare that
a data transformation method isn't naturally thought of with a
parameter!

Transforming data

» In previous practical problems we've used simple transforms to
make the data easier to model:
» log-transform
» square-root/power transform
» Some data simplify greatly when transformed appropriately:
» periodic data are simpler after taking a frequency transform
» Transformed data can be seen as feature augmentation, latent
embedding, etc, depending on use.
» Generally, the goal is to make the noise additive so that it
averages out.

The Basis Expansion

» Many transforms are designed to exactly reproduce the data.
» These are basis expansions and are typically invertible.

» They make good feature sets if they result in a dimensionality

reduction;
» that is, they lead to a useful approximation using only a few
features.
» PCA is one example of this.
» There are many others. . .

Fourier transform

» The Fourier transform is written:
A m .
fon = [fa)emids
— 0

» The Discrete Fourier Transform (DFT) is used in practice as
datasets typically have a minimum sampling rate §.

> It is usually computed using the Fast Fourier Transform
(FFT).

» Consider using it for periodic data, or to look for periodicity.

» The power in any frequency ¢ is proportional to]f(m)|2
» High power means this frequency is present in your data.
» There are formal tests for “significance” of high power.

Fourier transform example

conndata_ts (t= ((conndata$ts),
(conndata$ts) ,by=1) ,x=0)
for(i in 1 (conndata) [1]){

conndata_ts[(conndatali,]
conndata_ts[1,"t"]),
conndata_ts[(conndatali,

conndata_ts[1,"t"]),
}
Not fast unless length(z)=2"k
myx=1:(2716) # Largest wvaltd chotice
conndata_fft (conndata_ts [myx, 1)

Fourier transform example

Power = abs(FFT)"2

a) Time domain

T T
60000 100000

Time bin (second)

b) Frequency domain

T
120000

FFT index

Walsh-

| 2

| 2

\4

Hadamard transform

The Walsh-Hadamard transform is a version of the Fourier
Transform that is useful for Binary data.
It is defined recursively via the Hadamard Matrix:

Hy =1,
H. — L Hm—l Hm—l
i ﬂ Hmfl *Hmfl

For N total bits, the whole matrix is of size 2" x 2™ = N x N.
The transform is w = Hx.

w can be computed efficiently with the fast Walsh-Hadamard
transform in complexity O(N log(N)).

It was developed in encryption & signals processing but is
useful to generate features in many contexts.

Woalsh-Hadamard matrices

Woalsh-Hadamard matrices

1
1

1] 1
H2=21 4

Walsh-Hadamard transform examples

> Examples:
L 0107000 = 00100 [0
> 11111... -> +0000...
> (01010... -> +-000...
> 10101... -> +-+000...
> 00010001... -> ++++4000....

> i.e. the i-th bit is activated by periodicity of length i
P The details are sensitive to the “phase”, i.e. exactly where in
the sequence the periodicity lies.

Walsh-Hadamard transform example

a) Walsh-Hadamard transform of x>0

30000

WT i

b) Walsh-Hadamard transform of x>1

<) Walsh-Hadamard transform of x>10

0000

W e

Other transforms

» Other transforms can be useful. For example:
> Wavelets (time and space decomposition)
» Laplace transform
» Sine/ Cosine transforms
» Hankel transform (radial basis function)
» Polynomials
> .. etc

» All you need is a basis function and you have a transform.

Density estimation overview

» Density estimation is an extremely hard problem because it
maps discrete data into a continuous estimator.

» This is only conceptually well founded if we are willing to make
(strong) assumptions regarding smoothness.

» There is no way to perform an entirely data-driven analysis!

» Many popular methods are very bad if, for example, the
smoothness varies by location.

Kernel density estimation (KDE)

> Let {7;} | be a dataset on some space (for simplicity taken as
RY).

» Then the Kernel K provides the density estimate for any point
iy as:

N
. 1 L.
fa@) ==Y Ku (-),
Nz‘:l
where H is a matrix of bandwidths.
» In other words, its a sum of independent contributions from

each datapoint.
» It can be written:

Ky (

<y
\
B
N—
Il
o,
D
o+
—
=
s
|
iy
—
<y
\
K
e
N———

KDE in 1d

» |n 1D:

fh@):]lvgzc@f)

» Its common to use a Normal kernel
K (z) = Normal(z; p = 0,0 = 1).
» h can be chosen by minimising the “Mean Integrated Square
Error”. ..
» which theoretically suggests a functional form h oc N~
» Most density tools in packages use a reasonable default (which
also depends on dimension).
» This is appropriate for statistical inference of the density
estimate at an unspecified point x.
» In practice the “right” bandwidth is a function of the
question, so defaults might work poorly.
» For EDA, we often want a smaller bandwidth to reveal
potential data features

1/5.

KDE Example

kde Density estimator, kde Density estimator, kde Density estimator, h= 0.002

kde Density estimator, h=

KDE with unique points

kde Density estimator, kde Density estimator, kde Density estimator, h= 0.002

kde Density estimator, h=

KDE kernels

» Some important multivariate kernels:
» Spheroid Gaussian (H and X are diagonal)
> Rectangular (H is diagonal, Uniform kernel)
» Product Gaussian (H off-diagonals are products, ¥ is diagonal)
» H is a parameter. It can be estimated by Cross-Validation but
it is high dimensional so this is hard.

Applications of KDE

» Kernel density estimates are considered important in many
applications, including:
» Smoothing
» Clustering
» Topological Data Analysis
P Level set estimation
» Feature Extraction
> .. etc!

K-Nearest neighbours

» Measuring neighbourhoods is a very important component of
many applications.

» A fast way to do this is by computing k-Nearest neighbours
(k-NN) for each point.

» Note the requirement for a distance measure (metric or
otherwise).

» Algorithms to do this are called nearest neighbour search:

» Linear algorithms: Check all distances for all points. O(N?)
to compute the structure.

» Space partitioning: KD-trees etc partition the space.
O(N log(N)) but are less good in high dimensions. ..

» Approximate methods: there are many great methods for this
problem, which are often nearly perfect and much faster.
Locality Sensitive Hashing is popular.

k-NN density estimation

» A Density estimate using k-NN:

k 1

A)

> where:
» d is the dimension of the space,
» [is the number of neighbours,
» N is the sample size,
> R{(z) is the “radius”, i.e. the distance to the k-th closest
neighbour of z, and
» V/, is the volume of a unit ball:

/2

Vi==————
L(d/2+1)

> soVi=2 Vo=, V3=3r%2

» NB Like the distance function, k is a parameter!

k-NN density estimation

()
Xseq (-0.035, 0.0046, length.out=50)
Yseq (-0.009, 0.02, length.out=50)
Grid (Xseq, Yseq)

klist= (1,2,5,10,20,50)

knnlist (klist,function(k){
KNN (testdata_all.svd$ul,1:2], Grid, k)
KNNm (KNN,nrow= (Xseq) ,ncol= (Yseq))

b

k-NN density estimation

kNN Density estimator 1 kNN Density estimator 5 kNN Density estimator 10

a1 00m

&
2
S

kNN Density estimator 50 kNN Density estimator 100 kNN Density estimator 500

a1 a0m

0008 0am

The Kernel trick - a Motivation

» What if there is a nonlinearity in the data?
> : map the data into a higher dimensional space in
which the relationship is (approximately) linear

Input Space Feature Space

The Kernel Trick

» Problem: High dimensional spaces are hard to work with and
computationally costly

» Solution: Make the space implicit: all computation is done
using a Kernel that uses a map ¢ : X — R" for data in the
original space z,y € X:

K(z,y) = (¢(x), 9(y))

» Kernels are any function that can be expressed as an inner
product..

Kernel example

» Input space X C R? with the map:
¢: X = (21, 22) = (23,23, V2x129) € R3
» i.e. the second moments. Then:

<¢($)7¢(y)> = <(:I;%7x§7ﬁx1$2)7(y%?y§a\/§yly2)>
(21yf + 23Y3 + 271Y172Y2)
= (T1y1 + 2232)? = (X, ¥),

» i.e. the (squared) dot product.

Kernel examples!

1. Effect of the map ¢(x,,X2) = (X}, v/2X1x2,X3) (a) Input space X and (b)
feature space H.

https://people.cs.pitt.edu/~milos/courses/cs3750-Fall2007/lectures/class-kernels.pdf

Kernel properties

P Kernel spaces are closed under many operations.
» Being closed under f means that if x is in the space, f(x) is
also in the space.
» The operations are:
1. Addition: K(z,y) = Ki(z,y) + Ka(z,y)
Multiplication of a scalar: K(z,y) = aK;(z,y)
Kernel Product: K (z,y) = Ki(z,y)Ka(x,y)
Functional Product: K(z,y) = f(x)f(y)
Kernel of a Kernel: K(z,y) = K3(¢(x), d(y))
6. Matrix operation: K (z,y) = 27 By

SARE SR)

> It is therefore possible to make modular kernels.

Gram Matrix

» The Gram matrix is used by many methods exploiting the
Kernel Trick:

K= (k(xla xj))ij) VZ,]

» This is a pre-computation: we compute the kernel between all
pairs once, at the beginning, from which all subsequent
computations follow.

» Gram matrices should be positive semi-definite. You can do the
theory, or just check. ..

» The resulting space is called a Reproducing Kernel Hilbert
Space (RKHS).

> It provides several important properties? and underpins many
applications. ..

2Hofmann, Schoelkopf, & Smola (2008)
(Ann. Stat.)

https://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/materials/0701907.pdf
https://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/materials/0701907.pdf

Important applications (later)

» Support Vector Machines

> Kernel Regression

» Kernel models on graphs (random walk, etc)
» Causal inference (Markov graphs)

> Kernel PCA

Kernel PCA

» For illustration we'll consider kernel PCA. Map z; € R to an
arbitrary feature space ¢(z;) € R™ using the Gram Matrix:

K(z,y) = ¢()" (y)
» For which we'll consider the eigenvector equation for v € R™:

Cv=M
> with the usual properties for the mean = 1 " | ¢(2;) =0

and covariance C = 1 37 | ¢(z;)¢(z;)7.

Kernel PCA continued

» Eigenvectors are linear combinations of the features:
v =30 ().

» It turns out that kernel PCA requires only solving the regular
eigenvector problem for the eigenvalues a; of a Kernel
matrix K:

KO(Z‘ =)\,L'Oéi
Because the feature space may not be mean centred, K # K
in general but is simply related:

K=K-21y,K+1,,K1,,

> where 1/, is a vector of length n with elements 1/n.

Kernel PCA example

> See 3.
¢)

kpcvanilla (. ,data=testdata_sample,

kernel= ,kpar= () ,features=4)
kpc (~.,data=testdata_sample,

kernel= ,kpar= (sigma=0.02) ,features=4)
kpclaplace (~.,data=testdata_sample,

kernel= ,kpar= () ,features=10)
kpcpoly (~.,data=testdata_sample,

kernel= ,kpar= () ,features=10)

(kpcCeig) # Plot eigenvalues

*Hofmann, Schoelkopf, & Smola (2008)
(Ann. Stat.)

https://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/materials/0701907.pdf
https://www.ccs.neu.edu/home/vip/teach/MLcourse/6_SVM_kernels/materials/0701907.pdf

Kernel PCA example

Vanilla Laplace

4

50 0 50

2nd Principal Compo:
=150
2nd Principal Com

=250

T T T T
-250 -200 -150 -100 -50 10

15t Principal Companent 15t Principal Gomponent

Radial Polynomial

?

50 0 50

-150

-250

T T
-200 -150 -100

15t Principal Companent 15t Principal Gomponent

Example Kernels:

> Linear Kernel: k(x,y) =x'y +c¢
» The regular dot product.
» Gaussian Kernel: k(x,y) = exp (7"2(;23"2) +c
» Very susceptible to outliers due to the “narrow tails”
» Exponential Kernel: k(x,y) = exp (_‘2’;—2}") +c
> Also called the radial kernel
» Related to the Laplacian kernel
» Power Kernel: k(x,y) = —|x —y?
» conditionally positive definite, so needs extra care
Log Kernel: k(x,y) = —log(|x — y|+1)

» conditionally positive definite, so needs extra care

\4

» Histogram Intersection Kernel

http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/

Thoughts on kernels

» The choice of Kernel is a parameter

» Which may itself contain additional parameters,
e.g. bandwidths

» How to estimate? Evaluating performance requires calculating
the whole N2 matrix so it will be slow to iterate!

» Machine Learning thrives on usage cases where these decisions
are either relatively unimportant or determined by the
method.

P> As we've seen, adaptive kernels such as nearest neighbour
density estimation may be more robust than parametric
kernels. Similar guidance holds here.

Reflection

» What role could transforms play in classification?
» How do you know if they are working?
» How do these transforms generalise? What parameters does
this introduce?
» What is the benefit of the Kernel Trick? What is the cost?
» How would you apply it in practice?
» When should you estimate density by KDE vs KNN?

» What does the density estimate at a point mean?
» How could it be used in classification?
» What are its other uses?

Signposting

» Transforms are clearly linked to PCA from Block 03
» Further reading for nonparametric statistics:

>

» Basis Expansions: Chapter 5 of

(Friedman,
Hastie and Tibshirani).
» Further reading for Kernel Density Estimation:
» Kernel Smoothing: Chapter 6 of
(Friedman,

Hastie and Tibshirani).
> For kNN

https://bookdown.org/egarpor/NP-UC3M/
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://faculty.washington.edu/yenchic/18W_425/Lec7_knn_basis.pdf

Signposting (2)

» For the Kernel Trick

» For the Kernel PCA:
» Hofmann, Schoelkopf, & Smola (2008)
(Ann. Stat.)
» Schoelkopf B., A. Smola, K.-R. Mueller (1998)

https://people.cs.pitt.edu/~milos/courses/cs3750-Fall2007/lectures/class-kernels.pdf
http://www.cs.haifa.ac.il/~rita/uml_course/lectures/KPCA.pdf
https://projecteuclid.org/journals/annals-of-statistics/volume-36/issue-3/Kernel-methods-in-machine-learning/10.1214/009053607000000677.full
https://projecteuclid.org/journals/annals-of-statistics/volume-36/issue-3/Kernel-methods-in-machine-learning/10.1214/009053607000000677.full
https://www.mlpack.org/papers/kpca.pdf
https://www.mlpack.org/papers/kpca.pdf

