
Clustering

Daniel Lawson University of Bristol

Lecture 03.2.1 (v2.0.0)

https://xkcd.com/2731/

https://xkcd.com/2731/

Signposting

I We have made latent structures using SVD and PCA.
I This dimensionality reduction is essential for many types of

analysis including clustering.
I Clustering is one of the most fundamental data analysis tools

and the ideas form the cornerstone of more complex
approaches.

I We cover:
I How Clustering methods are organised,
I Hierarchical clustering
I K-means
I Gaussian Mixture Modelling
I Density-based model-free clustering (dbscan)

Questions

I What is a cluster?
I When does it make sense to do clustering? When does it not?
I How does the scale of data interact with the choice of

clustering algorithm?
I When might spectral clustering work, when direct clustering

does not? And vice-versa?

Clustering

I Clustering contains enough complexity to cover several courses
by itself.

I You are likely to use clustering in several projects, sometimes as
the goal and sometimes as a data processing step.

I We will talk about computational complexity. This is
covered in full detail later in the course. Today, O(f(N))
means that “the algorithm run-time approximately increases as
f(N)” (for the worst case data).

Clustering paradigms
I Most clustering procedures fit one or more of these paradigms:
I Algorithmic clustering

I An algorithm is run which outputs a clustering of the data
I Usually fast
I Usually data-type specific
I Often hard to interpret

I Distance-based clustering
I Distances between all items are considered and then clustered

somehow
I Widely applicable
I Often can be linked to a model

I Model-based clustering
I Explicit objective function used
I Can be slower - unless a convenient model is chosen
I Can be made to solve a specific task, handle uncertainty
I Most appropriate when you want the clusters to “mean

something”

Most important clustering methods

I Algorithmic:
I graph-cutting methods, e.g. modularity
I space partitioning, e.g. KD-trees, etc

I Hierarchical, distance-based:
I single linkage
I complete linkage
I average linkage

I Model-based:
I k-means (though was introduced as an algorithm)
I Gaussian mixture modelling (GMM)
I Bayesian clustering

Algorithmic clustering

Algorithmic approaches are best when used with a goal that exploits
the structure provided. We’ll visit them as needed. For example:
I There are really fast graph clustering algorithms. The

clusters are not always “best” but they are useful.
I See for example modularity maximisation, min-cut
I General problem: community detection

I Some really useful data structures in computer science
resemble clustering.
I KD-trees are a binary splitting method for Rd

I They partition the space using the specified points
I See also Quadtree, R-tree, etc.
I They solve lookup problems; for example, fast recall of

approximate nearest-neighbours.

Hierarchical clustering

This comes in two flavours:
I Divisive clustering: start with all objects in a single cluster

and split them;
I Agglomerative clustering: start with all objects in a different

cluster and merge them.
I In general divisive clustering can be harder to “get right” so we

focus on agglomerative methods. Broadly, these:
1. start with N clusters ci; defined by the original points
2. choose the closest two clusters a and b to merge based on a

distance measure dab

3. update the locations and hence the distances of the clusters
according to some rule.

Distances

I The choice of distance is very important for clustering. Here
are some common ones:

Model Norm Equation

Euclidean (L2) ‖x− y‖2
√∑n

i=1(xi − yi)2

Squared Euclidean ‖x− y‖22
∑n

i=1(xi − yi)2

Manhattan (L1) ‖x− y‖1
∑n

i=1|xi − yi|
Maximum (L∞) ‖x− y‖∞ maxi|xi − yi|
Mahalanobis ‖x− y‖M [(~x− ~y)C−1(~x− ~y)T)]1/2

I Note the connection of the Mahalanobis norm to PCA1!
I See also: Hamming Distance (for binary variables), edit

distance, etc.

1“The squared Mahalanobis distance is equal to the sum of squares of the
scores of all non-zero standardised principal components.”

https://onlinelibrary.wiley.com/doi/full/10.1002/cem.2692
https://onlinelibrary.wiley.com/doi/full/10.1002/cem.2692

Metrics and related objects

I Distances d : X ×X → [0,∞) are a Metric and satisfy:
I d(x, y) = d(y, x): symmetry
I d(x, y) ≥ 0: non-negativity
I d(x, y) = 0⇔ x = y: (the distance is only zero if the elements

are the same)
I d(x, z) ≤ d(x, y) + d(y, z): Triangle inequality

I Some methods can work with divergences, which need not
satisfy symmetry or the Triangle inequality.

I If instead d(x, z) ≤ max(d(x, y), d(y, z)) the d is called
ultrametric. This is important for certain types of tree.

Hierarchical clustering

I Hierarchical clustering methods report trees as their output.
I We select the threshold k (a “tree cut”) to select the number

of clusters
I Many criteria exist to do this selection in an automated way:

I Within-vs Between cluster variation2

I Gap statistic3

I etc . . .
I Why not use Cross validation?

2Calinski and Harabasz (1974), “A dendrite method for cluster analysis”
3Tibshirani et al. (2001), “Estimating the number of clusters in a data set via

the gap statistic”

Linkage clustering

Single linkage clustering

Single linkage clustering

I Hierarchical clustering where we set

da,b = min
i∈a,j∈b

di,j

I i.e. the distance is the closest point in each cluster.
I The naive implementation would take O(N3).
I Good implementations are O(N2) (e.g. SLINK, 1973)4,

Kruskal’s algorithm for minimum spanning trees.

4Sibson 1973, “SLINK: An optimally efficient algorithm for the single-link
cluster method”.

Complete linkage clustering

Complete linkage clustering

I Hierarchical clustering where we set

da,b = max
i∈a,j∈b

di,j

I i.e. the distance is the furthest point in each cluster.
I The naive implementation would take O(N3).
I Good implementations are O(N2) (CLINK, 1977)5.

5Defays 1977, “An efficient algorithm for a complete link method”.

Average linkage clustering

Average linkage clustering

I Also known as “Unweighted Pair Group Method with
Arithmetic mean” (UPGMA).

I Hierarchical clustering where we set

da,b = Ei∈a,j∈b(di,j)

I i.e. the distance is the average distance between each cluster.
I The naive implementation would take O(N3).
I Good implementations are O(N2 log(N)).
I It can be “meaningful”:

I the recovered tree is the “true tree” if the clusters diverged at
constant rate.

I This is plausible in evolution, for example.

Hierarchical Clustering: See also

I Centroid Linkage: Define centres of each cluster, compute
distance to cluster centres

I Minimax Clustering6 : Minimise the maximum radius to the
centre of each group

I NB: Minimax is an important concept in Machine Learning!

6Bien et al. (2011), “Hierarchical Clustering with Prototypes via Minimax
Linkage”

Implementations in R

library("hclust") # default hierarchical clustering
library("fastcluster") # faster implementations

I Implementations are important for computational complexity
and speed7

7http://danifold.net/fastcluster.html?section=1

K-means clustering

I Probably the most widely used clustering algorithm.
I Randomly (or otherwise) initialise K locations as initial cluster

means µk

I Iteratively, until convergence:
1. Assign each sample xi to its closest cluster

c(xi) = mink d(xi, µk)
2. Set each cluster mean to the mean of its members

µk = 1
nk

∑
i:c(xi)=k xi

I In practice, we:
I Use a large number of starting values
I Use “intelligent” initial guesses

I Computational complexity (per clustering) is O(N2) but
getting convergence is harder.
I Approximate O(N) algorithms exist.

K-means clustering

K-means clustering

Beyond K-means

I Soft K-means: replace assignment with cluster probabilities.
I Typically better convergence than hard K-means.

I K-means assumes that clusters are spherical.
I This might work when clusters are well-separated or the data

scaled in the right way.
I Sometimes high dimensionality makes this more plausible.

I Gaussian Mixture Modelling (GMM) allows ellipsoid clusters to
be fit instead.

I GMMs are a more general class of model than K-means and
therefore perform uniformly better when used correctly
I There are model selection issues, resolved by CV or information

criteria (BIC)

Expectation Maximization

I Expectation-Maximization (EM) is an optimization tool for
problems with a latent parameter Z of the form:

L(θ,X) = p(X|θ) =
∫
p(X,Z|θ)dZ

I Where we wish to maximise the Likelihood L(θ,X) with
respect to θ, marginalising out Z.

I In soft K-means, Z is the probability of belonging to each
cluster; θ is the location of the clusters.

I EM solves this by iteratively:
I Computing the Expected value of the latent E(Z|θ),
I Computing the Maximum likelihood estimate p(X,Z|θ).

I EM provably always improves L(θ,X).

https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm

Gaussian Mixture Modelling

Gaussian Mixture Modelling

I Randomly initialise K locations as initial cluster means µk,
each with an initial covariance Σk (can just be spherical)

I Iteratively, until convergence:
1. Compute the density of each cluster at each point

dik = Kk(xi|µk,Σk)
2. Compute the probability of each cluster for each point:

pik = dik/
∑

k′ dik′

3. Update the cluster parameters accounting for the probabilistic
memberships

I In practice, we still want to:
I Use several starting values
I Use “intelligent” initial guesses

I probabilistic assignment speeds convergence over K-means
I Computational complexity is O(N2), though the constant is

larger than for K-means. What is the dependency on K?

Gaussian Mixture Modelling

I GMMs work very well on a range of problems.
I However, choosing Σ and K can be awkward
I One solution is to use a (semi)Bayesian paradigm:

I Fit the clusters using EM as in regular GMMs
I Use Bayesian Model selection (BIC) to choose a model for Σ

and select K
I Σ choices: ellipsoid vs circular, volume, shape, orientation
I Changes the dimension of Σ, hence affects BIC

I This isn’t reliable model selection for whether GMM is
appropriate, but it is good selection for what shape Σ to use

I In R: library(mclust)

Example: K-means clustering

I Run K-means clustering on the whole example dataset:
km.all.raw=lapply(1:10,function(i){

km=kmeans(testdata_all_scaled,centers=i,nstart=10)
})

I Spectral clustering just means running the same clustering
algorithm on the top PCs in a PCA/SVD

km.all.svd=lapply(1:10,function(i){
km=kmeans(testdata_all.svd$u,centers=i,nstart=10)

})

Example: K-means clustering

I Run K-means clustering on the whole example dataset:
km.all.raw=lapply(1:10,function(i){

km=kmeans(testdata_all_scaled,centers=i,nstart=10)
})

I Spectral clustering just means running the same clustering
algorithm on the top PCs in a PCA/SVD

km.all.svd=lapply(1:10,function(i){
km=kmeans(testdata_all.svd$u,centers=i,nstart=10)

})

Example: GMM using mclust

library("mclust")
mc.all=mclustBIC(testdata_all.svd$u,G=1:20)
mclustBIC Compares lots of models
mc.assignments=lapply(1:20,function(i){

tmp=mclustModel(testdata_all.svd$u,mc.all,G=i)
apply(tmp$z,1,which.max)

}) # extract the results for the best models

Example: GMM using mclust: diagnostics

DBSCAN

I “Density-Based Spatial Clustering of Applications with Noise”8.
I Clusters arbitrary shapes that are above some threshold density.
I Uses K-Nearest-Neighbours (next session) to approximate

density.
I “dense” points have many close neighbours, “outliers” have few

I Uses KD-trees to efficiently approximate k-NN calculation.
I changes complexity from O(N2) to O(N log(N)); nb relatively

slow still as have to do this multiple times. . .
I Overview: Initialise: Assign a cluster to each “dense” point.

Then iterate:
1. All neighbours of a cluster are also in that cluster
2. Merge joined clusters
3. Update neighbours of each cluster

8Kriegel, Hans-Peter, Sander & Xu (1996). “A density-based algorithm for
discovering clusters in large spatial databases with noise”

HDBSCAN

I DBSCAN is limited because all clusters have to have the same
minimum density threshold

I This sometimes leads to clusters being ignored as noise
I Many variants exist to address this
I One of the most important is HDBSCAN9 : An extension of

DBSCAN allowing variation in density across clusters

9McInnes & Healy (2017), “Accelerated Hierarchical Density Based
Clustering”

Example: DBSCAN in R

library("dbscan")
Hardest part is choosing the threshold
test=kNNdist(testdata_all.svd$u, k = 5)
testmin=apply(test,1,min)
plot(sort(testmin[testmin>1e-8]),log="xy")
abline(h=0.001) # we chose
abline(h=0.01) # would give bigger clusters
abline(h=0.0001) # would give smaller clusters
kNNdistplot(testdata_all.svd$u, k = 5)
This is actually running it (quite slow)
dbscanres=dbscan(testdata_all.svd$u,0.001)

Example: DBSCAN clustering

Example: K-means clustering

Example: K-means spectral clustering

Example: GMM spectral clustering

Example: generating the plots

png(paste0("../media/03.2.5-Clustering_kmeans_svd.png"),
height=1000,width=1600)

par(mfrow=c(2,5))
for(i in 1:10){

plot(testdata_all.svd$u[,1],
testdata_all.svd$u[,2],xlab="",axes=F,
ylab="",
col=km.all.svd[[i]]$cluster,pch=19,cex=0.5)

title(main=paste("K=",i),cex.main=2)
}
dev.off()

Important extensions: How many clusters, really?

I Any model selection approach can allow selection of the
number of clusters.

I When the model is supposed to be true then careful model
selection is important. The usual model selection rules apply.

I When the model is for convenience then the clustering is
just a tool for understanding.
I The number of clusters is a tuning parameter that can be

chosen by convenience
I Sensitivity analysis should be used to investigate whether it

matters.

Scikit Learn Diagram

https://scikit-learn.org/stable/modules/clustering.html

Reflection

I By the end of the course, you should:
I Be able to describe the key approaches to clustering
I Be able to interpret common hierarchical clustering algorithms
I Be able to reason about the appropriate clustering algorithm for

a particular problem

Further Reading

I References:
I Tibsherani’s Data Mining lecture notes (Lecture 2 and Lecture

5)
I 5 clustering algorithms you need to know
I The fastcluster packages for R and python implements “fastest”

O(N2) versions of hierarchical clustering.
I Python resources comparing hdbscan

http://www.stat.cmu.edu/~ryantibs/datamining
http://www.stat.cmu.edu/~ryantibs/datamining/lectures/05-clus2.pdf
http://www.stat.cmu.edu/~ryantibs/datamining/lectures/06-clus3.pdf
http://www.stat.cmu.edu/~ryantibs/datamining/lectures/06-clus3.pdf
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
http://danifold.net/fastcluster.html?section=1
https://hdbscan.readthedocs.io/en/latest/comparing_clustering_algorithms.html

