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https://www.youtube.com/watch?v=t-oTvYGLYPw

Questions

» How can we understand high dimensional objects with
low-dimensional visual tools?

» Is an Eigenvector space a latent space?

» Are parameters of a model a latent space?

» How are these to be used in Data Science?



Latent Structures

> |t is often useful to think of data X being represented in some
(usually lower-dimensional) space 6.
» 0 is the latent space for X.
> Examples:
» Parameters: X; ~ f(6;) for some model f
> Kernel representation: X; = Zle K(0;)
» Factor analysis
» Spectral decomposition, Principal Components Analysis,
Singular Value Decomposition



Structure of Latent Structures
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https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613%2824%2900189-X#f0005

Latent Structure

» What makes a latent space instead of a parameterisation is
the modelling done on that space.

P i.e. it is constructed to mean something

> If it is done with the intention of making similar data be close
then we might call this an embedding

» Much care is needed around the words “similar” and “close”!



https://stats.stackexchange.com/questions/2691/making-sense-of-
prlnclpal component-analysis-eigenvectors-eigenvalues/140579#140579
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https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579#1405790

Covariance

> Let X be an n by m matrix.
Consider that X has been mean centred, so that E(X. ;) =0
for columns j. Then:

\4

C = Cov(X) = 1 oyrx
n—1
» this is an unbiased estimator; the factor 1/(n — 1) arises
because we used the data to estimate the mean.
» (C'is an m by m matrix.
» We might also standardize the variance so that Var(X.;) = 1.



Principal Components Analysis

» Consider data X for which we seek the decomposition:
C = Cov(X)=UxUT

> Where:
» > is a diagonal matrix of the m eigenvalues.
» U is a matrix of m eigenvectors in columns.

» We'll construct this matrix by sequentially:
» Finding a projection of X onto a k dimensional subspace;
» that maximises the explained variance, or equivalently,
minimises the squared error in the prediction;
» conditional on this being orthogonal to all previous subspaces.



One dimensional projection

» We will project X onto a subspace U.

» |n one dimension this is a line defined by  of unit length
through the origin.

» The projection of Z; onto u is (¥; - @) in the new coordinate
system.

» Recall - ¢ = |Z||y| cos(d)



One dimensional projection

» We will compute the projection in the old coordinate system,
written (&; - 4).
» Using the properties of u the residuals are therefore:

|z — (% - @)d])* = (Z; — (& - D)u) - (T; — (F; - )W)



One dimensional projection

> Averaging over all vectors:

I U Lo
MSE(@) = - Z:Uz LT — (- 7)),
i=1

» But the first term is constant, so we therefore are seeking to
maximise:
1 L
=
» This is the second moment of # - Z; which can be written as:
E( - #;)* 4 Var(@ - &;).
» However, the mean of the projection is zero by construction so

minimising the MSE is equivalent to maximising the
variance explained.



Multiple dimensions

» To work with multiple dimensions:
> replace the single vector projection (% - Z;)@ with a sum over all
: . Ko oS
dimensions Y ", (U, - @;)tk.
» Or in matrix notation, U = XU.
» |t is straightforward to show that the cross terms cancel out,
» due to the orthogonality constraint uj, - u; = 0 for k # j.



Maximising variance

» Using matrix notation,

Var((_j) = - i 1 (XU)T(XU) (4)
- U’ fi’iU (5)
— Uulcu (6)

» Where C is the covariance.

» We need to constrain the search over U to look for unit
vectors.

» We do this with a A, which allows
unconstrained optimisation of a different problem.

» Lagrange multipliers are important tools for many optimisation
problems in Data Science.


https://en.wikipedia.org/wiki/Lagrange_multiplier
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In most calculus books today [11, 14, 15], Lagrange multipliers are explained as fol-
lows. Say that we wish to find the maximum value of f subject to the condition that
g = 0. Under certain assumptions about f and g, the Lagrange multipliers theorem as-
serts that at the solution point, the gradient vectors V f and Vg are parallel. Therefore,
either V f = AVg for some real number A, or Vg = 0. Combined with the equation
g = 0, this gives necessary conditions for a solution to the constrained optimization
problem. We will refer to this as the standard approach to Lagrange multipliers.

An earlier tradition approaches this subject far differently. It defines a new func-
tion, F = f + Ag, that incorporates both the objective function and the constraint,
and in which A is considered to be an additional variable. Here, F is referred to as a
Lagrangian function. The conditions for F to achieve an unconstrained extremum are
then determined, and these become necessary conditions for a solution to the original
problem. This is the Lagrangian function approach to Lagrange multipliers.




Optimisation

» For simplicity we'll just add the k-th dimension, conditioning
on orthogonality to the previous k — 1
» This is how many algorithms work in practice

» Constraint: u’u = 1. Therefore

L(u,\) = ulcu — A(uTu-1) (7)
oL 7
oL
= = 2cu — 2
a cu — 2\u ©)

» Which can be solved for when the derivatives are zero to get

ulu= 1 (10)
cu= Au (11)



PCA

» We have shown that the eigenvector u and eigenvalue A
solve:
cu = \u

» The eigenvectors can be arranged into a matrix U with
eigenvectors on the columns, and the eigenvalues into a
diagonal matrix . Then:

C=UxU"

» (Care needs to be taken with zero/repeated eigenvalues.)



Interpretation
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Our basis U is orthonormal, and

As C is a covariance matrix, it is symmetric.

Therefore the eigenvectors are orthogonal.

The eigenvalue (i.e. A;) is the variance explained by the
k-th PC.

The proportion of variance explained by K PCs is
R2 = Z]g:l Ak

Neo
m=1
If the data are really in a K dimensional subspace, the
eigenvalues beyond that should be 0.



Singular value decomposition

» PCA and SVD are related:

SVD(X) =UDVT
» and therefore
1

T 1 TrrT T DTD T T
X' X=—-VD'U'UDV: =V——V*' =VXV
n—1 n—1 1

» where ¥ = DTD/(n — 1) are both diagonal matrices.



PCA/SVD /Covariance plots

eigen(cov(X}}Svectors svd(coviX))$u

(see provided Rscripts)



Some notes

» The mean usually shows up in PC1 if you leave it in

» Here, mean centring X to X is weird; its re-weighting features
differently for each observation!

» SVD(X) and SVD(Cov(X)) contain the same structure,
elucidated differently

» When there are many fewer features than observations, working
with X directly is much faster

» If the number of features is higher than the number of
datapoints, working with Covariance makes sense.



Sampling data

svd(X)$u (226943 datapoints) svd(X)$u (2000 datapoints)




How many PCs?

» We select only those PCs whose eigenvalues are “large enough.
Procedures include:

>
>
>
>

>

scree plot, looking for an elbow in the distribution

EVs > 1, justified by random graph theory

Tracey-Widom theory, similarly

Horn’s criterion, based on simulating random matrices for the
remaining matrix structure after K are chosen

Velicer’'s MAP criterion, similar

» In practice any can be “wrong”, so common sense should be
applied.

» Eigenvectors associated with Eigenvalues that are “too small”
will contain some noise, even if they still contain a signal.



How many PCs?

(1]

1]

Here we have only 4 features. And we mean centred, which
removes a degree of freedom. So the data should lie on a 3D
subspace:

(testdata.eigen$values[1:4],8)
1859.25164 124.70157 16.04679 0.00000
(((testdata.svd$d) 2)/3,8)
1859.25164 124.70157 16.04679 0.00000

Scaling by the number of features is not important for the SVD
when computing the proportion of variance explained. Just
square the singular values.



Variance Explained

—— All data, SVD(X)
Small data, SVD(X)
Small data, SVD(cov(standardized X))
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Important properties:

vVVvyVvyvVYyyYy

If X is positive definite, its eigenvalues are > 0.

If X is positive semi-definite, its eigenvalues are > 0.
positive definite: If Vo £ 0 then v-zv > 0

positive semi-definite: If Vo # 0 then v - zv > 0

The matrix A is orthogonal if AT = A~L. This is true iff all
column vectors of A are orthonormal, and (equivalently) the
row vectors are too. All eigenvalues of an orthogonal matrix
are 1.

If X is square and non-degenerate (distinct eigenvalues), its
eigenvectors U form an orthonormal basis.



Projections are idempotent

» Once you project a vector into a subspace, projecting it again
does nothing. Such projections P are called idempotent:

PE=p, VK >1

» Spectral projections have this property.



R commands for matrix operations

A %% B # matriz multiplication
(A) # matriz transpose
(A) # diagonal wector of A
(x) # a diagonal matriz formed of the vector z
(A) # determinant
( (A)) # trace
(A) # matriz inverse
(A) # Eigenvalue decomposition
(A) # Singular Value Decomposition



Reflection

» You should:

» Be able to intuitively explain PCA, and perform simple
calculations using it
> Be able to relate PCA to SVD both mathematically and
intuitively
» Be able to deploy either appropriately on real data
» What is Spectral Decomposition doing? Why is it a good idea?
» How is it different to a model?
» What might it mean that two datapoints are “close” in a PCA
plot?
» What might go wrong when making a 2-D PCA plot?



Signposting

> We will look at clustering - both on the raw data but also on
PCs, which can often be used to avoid discrete features posing
a problem as well as being efficient.
» We'll explore PCA in the Workshop.
» Further reading could include:
>
> is an excellent

and thorough resource.
» | showed


https://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch18.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://www.tandfonline.com/doi/abs/10.1080/0025570X.2009.11953617
https://www.tandfonline.com/doi/abs/10.1080/0025570X.2009.11953617

