Latent Structures and PCA

Daniel Lawson University of Bristol

Lecture 03.1 (v2.0.2)

https://www.youtube.com/watch?v=t-oTvYGLYPw

Questions

- How can we understand high dimensional objects with low-dimensional visual tools?
- Is an Eigenvector space a latent space?
- Are parameters of a model a latent space?
- How are these to be used in Data Science?

Latent Structures

- It is often useful to think of data X being represented in some (usually lower-dimensional) space θ.
- θ is the latent space for X.
- Examples:
 - ▶ Parameters: $X_i \sim f(\theta_i)$ for some model f
 - Kernel representation: $X_i = \sum_{j=1}^{K} K(\theta_i)$
 - Factor analysis
 - Spectral decomposition, Principal Components Analysis, Singular Value Decomposition

Structure of Latent Structures

The Dimensions of dimensionality

Latent Structure

- What makes a latent space instead of a parameterisation is the modelling done on that space.
- i.e. it is constructed to mean something
- If it is done with the intention of making similar data be close then we might call this an embedding
- Much care is needed around the words "similar" and "close"!

PCA Example from Stack Exchange

Covariance

• Let X be an n by m matrix.

► Consider that X has been mean centred, so that E(X.,j) = 0 for columns j. Then:

$$C = \operatorname{Cov}(X) = \frac{1}{n-1}X^T X$$

- ► this is an unbiased estimator; the factor 1/(n 1) arises because we used the data to estimate the mean.
- \blacktriangleright C is an m by m matrix.
- We might also standardize the variance so that $Var(X_{j}) = 1$.

Principal Components Analysis

• Consider data X for which we seek the decomposition:

 $C = \operatorname{Cov}(X) = U\Sigma U^T$

Where:

- \blacktriangleright Σ is a diagonal matrix of the *m* eigenvalues.
- \blacktriangleright U is a matrix of m eigenvectors in columns.
- We'll construct this matrix by sequentially:
 - Finding a **projection** of X onto a k dimensional subspace;
 - that maximises the explained variance, or equivalently, minimises the squared error in the prediction;
 - conditional on this being orthogonal to all previous subspaces.

One dimensional projection

• We will project X onto a subspace U.

- In one dimension this is a line defined by *u* of unit length through the origin.
- ► The projection of x_i onto u is (x_i · u) in the new coordinate system.

• Recall
$$\vec{x} \cdot \vec{y} = |\vec{x}| |\vec{y}| \cos(\theta)$$

One dimensional projection

- We will compute the projection in the old coordinate system, written $(\vec{x}_i \cdot \vec{u})\vec{u}$.
- Using the properties of \vec{u} the residuals are therefore:

$$\begin{aligned} ||\vec{x}_{i} - (\vec{x}_{i} \cdot \vec{u})\vec{u}||^{2} &= (\vec{x}_{i} - (\vec{x}_{i} \cdot \vec{u})\vec{u}) \cdot (\vec{x}_{i} - (\vec{x}_{i} \cdot \vec{u})\vec{u}) \\ &= \vec{x}_{i} \cdot \vec{x}_{i} - 2(\vec{u} \cdot \vec{x}_{i})^{2} + (\vec{u} \cdot \vec{x}_{i})^{2}(\vec{u} \cdot \vec{u}) \end{aligned}$$
(1)
$$= \vec{x}_{i} \cdot \vec{x}_{i} - 2(\vec{u} \cdot \vec{x}_{i})^{2} + (\vec{u} \cdot \vec{x}_{i})^{2}(\vec{u} \cdot \vec{u}) \end{aligned}$$
(2)
$$= \vec{x}_{i} \cdot \vec{x}_{i} - (\vec{u} \cdot \vec{x}_{i})^{2} \end{aligned}$$
(3)

One dimensional projection

Averaging over all vectors:

$$MSE(\vec{u}) = \frac{1}{n} \sum_{i=1}^{n} \vec{x}_i \cdot \vec{x}_i - (\vec{u} \cdot \vec{x}_i)^2,$$

But the first term is constant, so we therefore are seeking to maximise:

$$\frac{1}{n}\sum_{i=1}^{n}(\vec{u}\cdot\vec{x}_i)^2,$$

• This is the second moment of $\vec{u} \cdot \vec{x}_i$ which can be written as:

$$\mathbb{E}(\vec{u}\cdot\vec{x}_i)^2 + \operatorname{Var}(\vec{u}\cdot\vec{x}_i).$$

However, the mean of the projection is zero by construction so minimising the MSE is equivalent to maximising the variance explained.

Multiple dimensions

To work with multiple dimensions:

- ► replace the single vector projection (*u* · *x*_i)*u* with a sum over all dimensions ∑^K_{k=1}(*u*_k · *x*_i)*u*_k.
- Or in matrix notation, $\vec{U} = XU$.
- It is straightforward to show that the cross terms cancel out,
 - due to the orthogonality constraint $\vec{u}_k \cdot \vec{u}_j = 0$ for $k \neq j$.

Maximising variance

Using matrix notation,

$$\operatorname{Var}(\vec{U}) = \frac{1}{n-1} (\mathbf{X}\mathbf{U})^T (\mathbf{X}\mathbf{U}) \quad (4)$$
$$= \mathbf{U}^T \frac{\mathbf{X}^T \mathbf{X}}{n-1} \mathbf{U} \quad (5)$$
$$= \mathbf{U}^T \mathbf{C} \mathbf{U} \quad (6)$$

- ▶ Where C is the covariance.
- We need to constrain the search over U to look for unit vectors.
- We do this with a Lagrange multiplier λ, which allows unconstrained optimisation of a different problem.
- Lagrange multipliers are important tools for many optimisation problems in Data Science.

Lagrangian Calculus

186

MATHEMATICS MAGAZINE

Leveling with Lagrange: An Alternate View of Constrained Optimization

DAN KALMAN American University Washington, D.C. 20016 kalman@american.edu

In most calculus books today [11, 14, 15], Lagrange multipliers are explained as follows. Say that we wish to find the maximum value of f subject to the condition that g = 0. Under certain assumptions about f and g, the Lagrange multipliers theorem asserts that at the solution point, the gradient vectors ∇f and ∇g are parallel. Therefore, either $\nabla f = \lambda \nabla g$ for some real number λ , or $\nabla g = 0$. Combined with the equation g = 0, this gives necessary conditions for a solution to the constrained optimization problem. We will refer to this as the standard approach to Lagrange multipliers.

An earlier tradition approaches this subject far differently. It defines a new function, $F = f + \lambda g$, that incorporates both the objective function and the constraint, and in which λ is considered to be an additional variable. Here, F is referred to as a *Lagrangian function*. The conditions for F to achieve an unconstrained extremum are then determined, and these become necessary conditions for a solution to the original problem. This is the Lagrangian function approach to Lagrange multipliers.

Optimisation

► For simplicity we'll just add the k-th dimension, conditioning on orthogonality to the previous k - 1

This is how many algorithms work in practice

• Constraint: $\mathbf{u}^T \mathbf{u} = 1$. Therefore

$$\mathbb{L}(\mathbf{u}, \lambda) = \mathbf{u}^T \mathbf{c} \mathbf{u} - \lambda (\mathbf{u}^T \mathbf{u} - 1)$$
(7)
$$\frac{\partial \mathbb{L}}{\partial \lambda} = \mathbf{u}^T \mathbf{u} - 1$$
(8)
$$\frac{\partial \mathbb{L}}{\partial \mathbf{u}} = 2\mathbf{c} \mathbf{u} - 2\lambda \mathbf{u}$$
(9)

Which can be solved for when the derivatives are zero to get

$$\mathbf{u}^T \mathbf{u} = 1 \tag{10}$$

 $\mathbf{c}\mathbf{u} = \lambda \mathbf{u}$ (11)

We have shown that the eigenvector u and eigenvalue λ solve:

$$\mathbf{c}\mathbf{u} = \lambda \mathbf{u}$$

The eigenvectors can be arranged into a matrix U with eigenvectors on the columns, and the eigenvalues into a diagonal matrix Σ. Then:

$$C = U\Sigma U^T$$

(Care needs to be taken with zero/repeated eigenvalues.)

Interpretation

- Our basis U is orthonormal, and
- As C is a covariance matrix, it is symmetric.
- Therefore the eigenvectors are orthogonal.
- The eigenvalue (i.e. λ_k) is the variance explained by the k-th PC.
- ▶ The proportion of variance explained by *K* PCs is

$$R^2 = \frac{\sum_{k=1}^{K} \lambda_k}{\sum_{m=1}^{M} \lambda_m}.$$

▶ If the data are really in a *K* dimensional subspace, the eigenvalues beyond that should be 0.

Singular value decomposition

PCA and SVD are related:

$$SVD(X) = UDV^T$$

and therefore

$$\frac{1}{n-1}X^T X = \frac{1}{n-1}VD^T U^T UDV^T = V\frac{D^T D}{n-1}V^T = V\Sigma V^T$$

• where $\Sigma = D^T D / (n-1)$ are both diagonal matrices.

PCA/SVD/Covariance plots

(see provided Rscripts)

Some notes

- The mean usually shows up in PC1 if you leave it in
- Here, mean centring X to X is weird; its re-weighting features differently for each observation!
- SVD(X) and $SVD(Cov(\tilde{X}))$ contain the same structure, elucidated differently
- When there are many fewer features than observations, working with X directly is much faster
- If the number of features is higher than the number of datapoints, working with Covariance makes sense.

Sampling data

How many PCs?

We select only those PCs whose eigenvalues are "large enough". Procedures include:

- scree plot, looking for an elbow in the distribution
- **EVs** > 1, justified by random graph theory
- Tracey-Widom theory, similarly
- Horn's criterion, based on simulating random matrices for the remaining matrix structure after K are chosen
- Velicer's MAP criterion, similar
- In practice any can be "wrong", so common sense should be applied.
- Eigenvectors associated with Eigenvalues that are "too small" will contain some noise, even if they still contain a signal.

How many PCs?

Here we have only 4 features. And we mean centred, which removes a degree of freedom. So the data should lie on a 3D subspace:

> round(testdata.eigen\$values[1:4],8)
[1] 1859.25164 124.70157 16.04679 0.00000
> round(((testdata.svd\$d)^2)/3,8)
[1] 1859.25164 124.70157 16.04679 0.00000

Scaling by the number of features is not important for the SVD when computing the *proportion* of variance explained. Just square the singular values.

Variance Explained

Important properties:

- If X is **positive definite**, its eigenvalues are > 0.
- If X is **positive semi-definite**, its eigenvalues are ≥ 0 .
- positive definite: If $\forall v \neq 0$ then $v \cdot xv > 0$
- ▶ positive semi-definite: If $\forall v \neq 0$ then $v \cdot xv \ge 0$
- The matrix A is orthogonal if A^T = A⁻¹. This is true iff all column vectors of A are orthonormal, and (equivalently) the row vectors are too. All eigenvalues of an orthogonal matrix are 1.
- If X is square and non-degenerate (distinct eigenvalues), its eigenvectors U form an orthonormal basis.

Projections are idempotent

Once you project a vector into a subspace, projecting it again does nothing. Such projections P are called idempotent:

$$P^K = P, \qquad \forall K \ge 1$$

Spectral projections have this property.

R commands for matrix operations

A %+% B # matrix multiplication t(A) # matrix transpose diag(A) # diagonal vector of A diag(x) # a diagonal matrix formed of the vector x det(A) # determinant sum(diag(A)) # trace solve(A) # matrix inverse eigen(A) # Eigenvalue decomposition svd(A) # Singular Value Decomposition

Reflection

You should:

- Be able to intuitively explain PCA, and perform simple calculations using it
- Be able to relate PCA to SVD both mathematically and intuitively

Be able to deploy either appropriately on real data

- What is Spectral Decomposition doing? Why is it a good idea?
- How is it different to a model?
- What might it mean that two datapoints are "close" in a PCA plot?
- What might go wrong when making a 2-D PCA plot?

Signposting

- We will look at clustering both on the raw data but also on PCs, which can often be used to avoid discrete features posing a problem as well as being efficient.
- We'll explore PCA in the Workshop.
- Further reading could include:
 - Cosma Shalizi's Advanced Data Analysis, Lecture 18
 - Boyd and Vandenberghe: Convex Optimization is an excellent and thorough resource.
 - I showed Kalman: Leveling with Lagrange: An Alternate View of Constrained Optimization