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Towards Modern Statistical Testing
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Signposting

I This lecture covers three main topics:
I Classical testing (and when its still ok to use it)
I Modern testing (and how to use it well)
I General Cross Validation (and why you should always do it)
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Questions

I In Science, why does statistical testing have a bad reputation?
I Does statistical testing have a place in large-scale data science

for applied domains?
I What is the purpose of Monte-Carlo testing?
I What does(n’t) Cross Validation save you from?
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Null hypothesis test

I Given some data {y}:
I Null Hypothesis H0: A statement is true about {y}.
I Alternative Hypothesis H1: The statement is not true.

I We then compute a test statistic T ({y}) whose distribution is
computable under H0.
I By convention, large T is evidence against the null.

I Then compute p-value p(T ≥ T ({y})), the probability of
observing a test statistic at least as large as that observed
given H0 is true.
I Example: H0: E(y) = µ with µ = 0. H1: µ 6= 0.
I This is not model selection. We favour H0 and must find

evidence against it to accept H1.
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Null hypothesis significance testing

I Hypothesis testing is asking: are my data consistent with this
hypothesis when using this measure?
I If you choose a silly hypothesis, testing will dutifully say “no”
I If you use a weak measure, testing will dutifully say “yes”
I Nothing is learned by this!

I The correct use of statistical testing is where:
1. the null hypothesis might plausibly be true, or
2. it might not be true, but you care how much power the data

has to reject the null
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When to use hypothesis testing

I Some valid use cases include:
I To rank hypotheses by how much evidence there is against

them
I To obtain a standardised scale (0-1) for combining evidence
I When data are scarce

I Also when testing plausible nulls, such as:
I validating simulations with a known simulator;
I independence or other non-parametric tests.
I broad null hypotheses, such as testing a range of parameters.
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Types of error

I The p-value defines the probability that H0 is true, but is
rejected.

I The power of the test is the probability that H0 is false but is
accepted anyway.
I Low power situations are to be avoided: see e.g. Andrew

Gelman’s blog1.
I Power is a surprisingly important problem because there are

many researcher degrees of freedom.
I so if power is low, we tend to find significant results anyway,

through the (often unintentional) use of the data to choose the
test.

1https://andrewgelman.com/2018/02/18/low-power-replication-crisis-
learned-since-2004-1984-1964/



8 / 33

Types of error

Error notation

. H0 true H0 false

H0 accepted Correct Type II error
H0 rejected Type I error Correct

I Under the convention that H0 = 0 = “negative” case and
H1 = 1 = “positive case”:

Alternative notation

. H0 holds H1 holds

H0 accepted True Negative False Negative
H0 rejected False Positive True Positive
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t-tests

I Can be one-tailed (H0: µ ≤ µ0) or two-tailed (H0: µ = µ0)
I Assumes:

I independence (note: paired tests are possible) and identically
distributed

I the data are Normal
I the standard deviation is either known (t is then Normal) or

estimated from the data (t is then t distributed).
I Used in regression, paired tests, etc.
I NB Incomplete notes as this is a prerequisite!
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Chi squared test

I The χ2 test is for categorical data comparing two variables.
I H0: No relationship between the variables; H1 Some

relationship between them.
I The test statistic for N datapoints from k classes, with xi

observations of type i, with expected value mi = Npi where pi

is the expected probabilities, is (under the null):

X2 =
k∑

i=1

(xi −mi)2

mi
∼ χ2(k − 1)

I This is most often used for contingency tables though
appears elsewhere.

I See also Fishers exact test for small samples.
I NB Incomplete notes as this is a prerequisite!



12 / 33

Other important tests

I Nonparametric tests:
I Mann-Whitney U or Wilcoxon rank sum test: are two

samples are drawn from the same distribution? by comparing
their ranks.

I Wilcoxon signed-rank test - as rank sum test, for paired data.
I Kolmogorov-Smirnov test - are two samples from the same

distribution? by comparing the empirical cumulative distribution
function.

I There are many online cookbooks which state exactly which
circumstances each test should be used in. You should be able
to use them.

I NB Incomplete notes as this is a prerequisite!
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Resampling

I The main types of resampling tests include:
I jacknifing, which is analysing subsets of data to estimate

(variance of) parameter estimates
I bootstrapping, which is resampling with replacement, to

estimate (variance of) parameter estimates
I permutation, which is resampling without replacement, to test

a null hypothesis
I cross-validation, which is analysing subsets of data to estimate

out-of-sample prediction, for model performance
I Each of these methods can be applied to a wide variety of

problems, and often requires thought to use appropriately.
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Permutations

All permutations of three colors (each column is a permutation):

I Figure from Wikipedia2. There are in general n! permutations.

2https://upload.wikimedia.org/wikipedia/commons/4/4c/Permutations_RGB.svg
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Generating permutations

> set.seed(1)
> n = 5
> x = seq(0,20,length=n)
> x
[1] 0 5 10 15 20
> x[sample.int(n)]
[1] 5 20 15 10 0
> x[sample.int(n)]
[1] 20 15 5 10 0
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Use of permutations in testing

I Consider the following general class of problem:
I H0: y is independent of x.
I H1: y is dependent on x.

I x may be continuous, categorical, etc and y may depend on a
number of other things.

I A permutation test will:
I resample x, y pairs under H0,
I Construct a test statistic T ,
I Test if T extreme in the real data, compared to the

permutations?
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Why permutations

I The main advantage is that the test is asymptotically correct
and distribution free. We only (!) have to assume
exchangeability.

I Exchangeability of what?
I what would be equal if the null hypothesis is true, and
I would be different if the alternative hypothesis is true?

I It is essential to maintain any true correlation structure
when performing the test, otherwise the test is not correct.

I For example, if the indices were originally correlated,
permutation will fail.
I as from e.g. a time-series.
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Some main types of test (1)

x1 x2 x3 y1 y2

4 12 -3 2 -24

I Permutation of indices:

x2 y1 x3 y2 x1

4 12 -3 2 -24

I Permutation of signs, retaining magnitudes:

x1 x2 x3 y1 y2

4 -12 3 -2 24
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Some main types of test (2)

x1 x2 x3 y1 y2

4 12 -3 2 -24

I Permutation of group labels:

x1 y1 y2 x2 x3

4 12 -3 2 -24

I Permutation within group labels:

x1 x2 x3 y1 y2

12 -3 4 -24 2
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Monte-Carlo testing

I There are in general n! permutations. This is typically too
many for n > 20.

I We instead choose N random permutations from all the
possible ones.

I Monte-Carlo testing is an important subject in its own right.
I Its often possible to place guarantees on the p-value from very

few samples.
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Monte-Carlo test

I To conduct a Monte-Carlo test, we construct N random
datasets and add our real dataset.

I We then ask, is the real dataset an outlier with respect to
the random datasets?

I Specifically, the p-value for a test T applied to X (where large
values are considered strange) is:

Rank(T (X);T ({xi}))
N + 1

I where Rank simply counts the number of cases as large or
larger.
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Permutation testing summary

I Distributional assumptions are often invalid (regular tests)
I Exchangeability assumptions are often plausible

(permutation tests)
I It is possible to get misleading inference if the assumptions of a

test don’t hold
I Permutation tests are really important for generating plausible

null hypotheses
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Model Selection

I Imagine that we have run two different inference procedures
(models) on our data.

I We want to decide which of these gives the best description of
the data.
I (we might pretend we want to know which one is right. . . )

I Model selection formalises how to make this assessment.
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General considerations

I To make Cross-Validation work, we need to be able to define
our inference goal cleanly. Some scenarios:
I Same source, single datapoint: Within a single datastream,

how well can we predict the next point?
I Same source, segment of data: Within a single datastream,

how well could we predict everything that happens within an
hour?

I New but understood source: We have multiple datastreams,
each of which might be different but all are generated by a
similar process. How well can we predict a new such datasource?

I Unexpected source: We have many classes of datastream.
How well can we predict what would happen on a new class of
datastream?
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Problems with LOOCV

I We might worry that leaving out one datapoint at a time isn’t
enough:
I Cost. It is straightforward to apply LOOCV to an arbitrary loss

function, including a Likelihood. However, it can be costly.
I Quality. LOOCV estimates of out-of-sample loss has high

variance because each test datapoint using n− 2 of the same
training datapoints. . .

I Empirically, we often choose a different model on different data
generated under the same distribution!

I Correlation. Any correlation breaks LOOCV.
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K-fold CV

I Naive k-fold CV addresses the first issue by creating a
bias-variance tradeoff: we introduce a bias (towards simpler
models) but also significantly reduce the variance of the MSE
estimation.

I More complicated sampling in k-fold settings can also address
correlation.

I Split the data into k “folds” f(i), that is, random
non-overlapping samples of the data of size n/k. Then:

I For each fold i:
I Call X−(f(i)) the “training” dataset and X(f(i)) the “test”

dataset
I Learn parameters θ̂i with data X−(f(i))

I Evaluate li = Loss(X(f(i))|θ̂i)
I And report 1

n

∑k
i=1 li
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How many folds?

I k-fold CV loses a fraction of the data, whereas LOOCV only
loses a constant.

I This means that (under the assumption that the true model
is not in the model space) k-fold CV will choose a simpler
model with less predictive power than was possible.

I However, smaller k can make the inference more consistent
across different data.

I For small data, LOOCV is recommended. For larger data,
k = 10 is often chosen:
I cost. k defines the minimum number of times you need to run

the models. If you can afford to run a model once, you can
probably afford 10 times.

I practicality. If you had only 10% more data you might expect
to get the same performance as LOOCV. We frequently lose
this amount of data to quality control, etc.
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Handling correlation

I Correlation structures can be handled in k-fold CV by careful
sampling:
I a-priori there is a correlation in time or space expected. we can

therefore remove windows.
I the data have some associated covariate, which can be removed

en-masse.
I empirical correlation structures can be used to select a point i

and all points correlated with it above some correlation
threshold.

I Some of these can be used in other contexts. Examples include:
I block bootstrap
I Using a different definition of a “datapoint” in a leave-one-out

context, for example: datapoints are countries instead of
countries at timepoints

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)#Block_bootstrap
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Reflection

I You should understand how to:
I Define and use a null hypothesis significance test,
I Contrast classical and resampling tests, and judge appropriate

uses,
I Use statistical testing appropriately in projects.
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Further reading
I Classical Testing

I Chapter 4 of Statistical Data Analysis by Glen Cowan
I Statistical tests, P values, confidence intervals, and power: a

guide to misinterpretations by Greenland et al
I Andrew Gelman’s blog has many examples of statistical testing

failures in social science and medicine
I Modern Testing

I Cosma Shalizi’s Modern Regression Lectures (Lectures 26,28)
I Cross Validation and Bootstrap Aggregating on Wikipedia
I Chapters 18.7 of The Elements of Statistical Learning: Data

Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

I Cross Validation
I Chapters 2.3 and 7.10 of The Elements of Statistical Learning:

Data Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

I Cosma Shalizi’s Modern Regression Lectures (Lectures 20, 26)

http://www.sherrytowers.com/cowan_statistical_data_analysis.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877414/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877414/
https://andrewgelman.com/2018/02/18/low-power-replication-crisis-learned-since-2004-1984-1964/
http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/
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Appendix: How many permutations?
I The smallest possible p-value with N permutations is

1/(N + 1). So 999 permutations gives a minimum of 0.001.
I The variance around a chosen threshold, say p = 0.05, is

determined by the sampling distribution of the Binomial:

sd(p) = sd (Bin(N, p)) =

√
p(1− p)

n

I p is of course the true unknown probability, not the observed
one.

I But variance is an increasing function of p (for p < 0.5)
I A heuristic rule is: to be 95% confident that p ≤ t we need the

empirical p-value to be less that t− 1.96sd(p = t)
I For N = 999 and t = 0.05, sd(p = t) = 0.0135 and therefore
p < 0.036

I A similar calculation shows N = 999 wouldn’t be enough to be
sure we were less than 0.005.

I This is conservative. . . only if the distribution is Normal. . . .(!)
Plot the distribution of T !


