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Signposting

» This lecture covers three main topics:
» Classical testing (and when its still ok to use it)
» Modern testing (and how to use it well)
» General Cross Validation (and why you should always do it)



Questions

» In Science, why does statistical testing have a bad reputation?

» Does statistical testing have a place in large-scale data science
for applied domains?

» What is the purpose of Monte-Carlo testing?

» What does(n't) Cross Validation save you from?



Null hypothesis test

» Given some data {y}:

» Null Hypothesis HO: A statement is true about {y}.
» Alternative Hypothesis H1: The statement is not true.

» We then compute a test statistic T'({y}) whose distribution is
computable under HO.

» By convention, large T is evidence against the null.

» Then compute p-value p(T' > T'({y})), the probability of
observing a test statistic at least as large as that observed
given HO is true.

» Example: HO: E(y) = p with = 0. H1: u # 0.
» This is not model selection. We favour HO and must find
evidence against it to accept H1.



Null hypothesis significance testing

» Hypothesis testing is asking: are my data consistent with this
hypothesis when using this measure?

» If you choose a silly hypothesis, testing will dutifully say “no”
» |If you use a weak measure, testing will dutifully say “yes”
» Nothing is learned by this!

» The correct use of statistical testing is where:

1. the null hypothesis might plausibly be true, or
2. it might not be true, but you care how much power the data
has to reject the null



When to use hypothesis testing

» Some valid use cases include:
» To rank hypotheses by how much evidence there is against
them
» To obtain a standardised scale (0-1) for combining evidence
» When data are scarce

» Also when testing plausible nulls, such as:

» validating simulations with a known simulator;
» independence or other non-parametric tests.
» broad null hypotheses, such as testing a range of parameters.



Types of error

» The p-value defines the probability that HO is true, but is
rejected.
» The power of the test is the probability that HO is false but is
accepted anyway.
»> Low power situations are to be avoided: see e.g. Andrew
Gelman's blog!.
» Power is a surprisingly important problem because there are
many researcher degrees of freedom.
» so if power is low, we tend to find significant results anyway,

through the (often unintentional) use of the data to choose the
test.

https://andrewgelman.com/2018,/02/18/low-power-replication-crisis-
learned-since-2004-1984-1964 /



Types of error

Error notation

HO true HO false

HO accepted Correct Type Il error
HO rejected  Type | error Correct




Types of error

Error notation

HO true HO false

HO accepted Correct Type Il error
HO rejected  Type | error Correct

» Under the convention that HO = 0 = “negative” case and
H1 =1 = "positive case":

Alternative notation

HO holds H1 holds

HO accepted True Negative False Negative
HO rejected  False Positive  True Positive




t-tests

» Can be one-tailed (HO: u < pg) or two-tailed (HO: p = po)
» Assumes:
> independence (note: paired tests are possible) and identically
distributed
» the data are Normal
» the standard deviation is either known (¢ is then Normal) or
estimated from the data (¢ is then t distributed).
P Used in regression, paired tests, etc.
» NB Incomplete notes as this is a prerequisite!



Chi squared test

» The x? test is for categorical data comparing two variables.

» HO: No relationship between the variables; H1 Some
relationship between them.

» The test statistic for NV datapoints from £ classes, with x;
observations of type 4, with expected value m; = Np; where p;
is the expected probabilities, is (under the null):

xr=y @Ml ey

i=1 mi

» This is most often used for contingency tables though
appears elsewhere.

» See also Fishers exact test for small samples.

» NB Incomplete notes as this is a prerequisite!



Other important tests

» Nonparametric tests:

» Mann-Whitney U or Wilcoxon rank sum test: are two
samples are drawn from the same distribution? by comparing
their ranks.

» Wilcoxon signed-rank test - as rank sum test, for paired data.

» Kolmogorov-Smirnov test - are two samples from the same
distribution? by comparing the empirical cumulative distribution
function.

» There are many online cookbooks which state exactly which
circumstances each test should be used in. You should be able
to use them.

» NB Incomplete notes as this is a prerequisite!



Resampling

» The main types of resampling tests include:

» jacknifing, which is analysing subsets of data to estimate
(variance of) parameter estimates

» bootstrapping, which is resampling with replacement, to
estimate (variance of) parameter estimates

» permutation, which is resampling without replacement, to test
a null hypothesis

» cross-validation, which is analysing subsets of data to estimate
out-of-sample prediction, for model performance

» Each of these methods can be applied to a wide variety of
problems, and often requires thought to use appropriately.



Permutations

All permutations of three colors (each column is a permutation):

999999
999999

999999

» Figure from Wikipedia®. There are in general n! permutations.

2https://upload.wikimedia.org/wikipedia/commons/4/4c/Permutations_RGB.svg



Generating permutations

> (1)

>n 5}

> X (0,20,1length=n)
> X

[11 0o 5 10 15 20

> x[ (m)]

[11 5 20 15 10 O

> x[ (m)]

[1] 20 15 5 10 O



Use of permutations in testing

» Consider the following general class of problem:
» HO: y is independent of z.
> H1: y is dependent on z.
» x may be continuous, categorical, etc and y may depend on a
number of other things.
» A permutation test will:
» resample x,y pairs under HO,
» Construct a test statistic T,
» Test if T extreme in the real data, compared to the
permutations?



Why permutations

» The main advantage is that the test is asymptotically correct
and distribution free. We only (!) have to assume
exchangeability.

» Exchangeability of what?

» what would be equal if the null hypothesis is true, and
» would be different if the alternative hypothesis is true?

P It is essential to maintain any true correlation structure
when performing the test, otherwise the test is not correct.

» For example, if the indices were originally correlated,
permutation will fail.

» as from e.g. a time-series.



Some main types of test (1)

x1I x2 x3 yl y2
4 12 -3 2 -24

» Permutation of indices:

x2 yl x3 y2 x1
4 12 -3 2 -24




Some main types of test (1)

x1I x2 x3 yl y2
4 12 -3 2 -24

» Permutation of indices:

x2 yl x3 y2 x1
4 12 -3 2 -24

» Permutation of signs, retaining magnitudes:

xl x2 x3 yl y2
4 -12 3 -2 24




Some main types of test (2)

xl x2 x3

yl

y2

4 12 -3

-24

» Permutation of group labels:

xl yl y2

x2

x3

4 12 -3

2

24




Some main types of test (2)

xl x2 x3 yl y2
4 12 -3 2 -24

» Permutation of group labels:

x1 yl y2 x2 x3
4 12 -3 2 -24

» Permutation within group labels:

xI x2 x3 yl y2
12 -3 4 -24 2




Monte-Carlo testing

» There are in general n! permutations. This is typically too
many for n > 20.

» We instead choose N random permutations from all the
possible ones.

» Monte-Carlo testing is an important subject in its own right.

» Its often possible to place guarantees on the p-value from very
few samples.



Monte-Carlo test

» To conduct a Monte-Carlo test, we construct N random
datasets and add our real dataset.
> We then ask, is the real dataset an outlier with respect to

the random datasets?
» Specifically, the p-value for a test 7" applied to X (where large
values are considered strange) is:

Rank(T(X); T({z:}))
N+1

» where Rank simply counts the number of cases as large or
larger.



Permutation testing summary

» Distributional assumptions are often invalid (regular tests)

» Exchangeability assumptions are often plausible
(permutation tests)

» |t is possible to get misleading inference if the assumptions of a
test don't hold

» Permutation tests are really important for generating plausible
null hypotheses



Model Selection

» Imagine that we have run two different inference procedures

(models) on our data.
» \We want to decide which of these gives the best description of

the data.
> (we might pretend we want to know which one is right. . .)

» Model selection formalises how to make this assessment.



General considerations

» To make Cross-Validation work, we need to be able to define
our inference goal cleanly. Some scenarios:

» Same source, single datapoint: Within a single datastream,
how well can we predict the next point?

» Same source, segment of data: Within a single datastream,
how well could we predict everything that happens within an
hour?

» New but understood source: We have multiple datastreams,
each of which might be different but all are generated by a
similar process. How well can we predict a new such datasource?

» Unexpected source: We have many classes of datastream.
How well can we predict what would happen on a new class of
datastream?



Problems with LOOCV

> We might worry that leaving out one datapoint at a time isn't
enough:

» Cost. It is straightforward to apply LOOCV to an arbitrary loss
function, including a Likelihood. However, it can be costly.

» Quality. LOOCV estimates of out-of-sample loss has high
variance because each test datapoint using n — 2 of the same
training datapoints. ..

» Empirically, we often choose a different model on different data
generated under the same distribution!

» Correlation. Any correlation breaks LOOCV.



K-fold CV

» Naive k-fold CV addresses the first issue by creating a
bias-variance tradeoff: we introduce a bias (towards simpler
models) but also significantly reduce the variance of the MSE
estimation.

» More complicated sampling in k-fold settings can also address
correlation.

» Split the data into k “folds” f(7), that is, random
non-overlapping samples of the data of size n/k. Then:

» For each fold i:

» Call X~(F()) the “training” dataset and X (/(9) the “test”
dataset

» Learn parameters 0; with data X~ (F()

> Evaluate I; = Loss(X(F()|4,)

> And report 1 5% | 7;



How many folds?

» k-fold CV loses a fraction of the data, whereas LOOCV only
loses a constant.

» This means that (under the assumption that the true model
is not in the model space) k-fold CV will choose a simpler
model with less predictive power than was possible.

» However, smaller &k can make the inference more consistent
across different data.

» For small data, LOOCV is recommended. For larger data,

= 10 is often chosen:

» cost. k defines the minimum number of times you need to run
the models. If you can afford to run a model once, you can
probably afford 10 times.

» practicality. If you had only 10% more data you might expect
to get the same performance as LOOCV. We frequently lose
this amount of data to quality control, etc.



Handling correlation

» Correlation structures can be handled in k-fold CV by careful
sampling:

» a-priori there is a correlation in time or space expected. we can
therefore remove windows.

P> the data have some associated covariate, which can be removed
en-masse.

» empirical correlation structures can be used to select a point %
and all points correlated with it above some correlation
threshold.

» Some of these can be used in other contexts. Examples include:

» block bootstrap

» Using a different definition of a “datapoint” in a leave-one-out
context, for example: datapoints are countries instead of
countries at timepoints


https://en.wikipedia.org/wiki/Bootstrapping_(statistics)#Block_bootstrap

Reflection

» You should understand how to:
» Define and use a null hypothesis significance test,
» Contrast classical and resampling tests, and judge appropriate
uses,
» Use statistical testing appropriately in projects.



Further reading

» Classical Testing

» Chapter 4 of
>
by Greenland et al
> has many examples of statistical testing
failures in social science and medicine

> Modern Testing

> (Lectures 26,28)
> and on Wikipedia
» Chapters 18.7 of
(Friedman, Hastie and
Tibshirani).

» Cross Validation

» Chapters 2.3 and 7.10 of
(Friedman, Hastie and
Tibshirani).
> (Lectures 20, 26)


http://www.sherrytowers.com/cowan_statistical_data_analysis.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877414/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877414/
https://andrewgelman.com/2018/02/18/low-power-replication-crisis-learned-since-2004-1984-1964/
http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/

Appendix: How many permutations?

| 2

| 2

The smallest possible p-value with N permutations is
1/(N +1). So 999 permutations gives a minimum of 0.001.
The variance around a chosen threshold, say p = 0.05, is
determined by the sampling distribution of the Binomial:

p(1—p)

sd(p) = sd (Bin(NN, p)) = -

» pis of course the true unknown probability, not the observed
one.
» But variance is an increasing function of p (for p < 0.5)

A heuristic rule is: to be 95% confident that p < ¢ we need the
empirical p-value to be less that ¢ — 1.96sd(p = ¢)

For N =999 and t = 0.05, sd(p = t) = 0.0135 and therefore
p < 0.036

A similar calculation shows N = 999 wouldn’t be enough to be
sure we were less than 0.005.

This is conservative. .. only if the distribution is Normal. .. .(!)
Plot the distribution of 7'l



