Towards Modern Regression

Daniel Lawson University of Bristol

Lecture 02.1 (v2.0.0)

Signposting

- This lecture covers:
- Classical regression
- Towards Modern Regression - the vectorised version, which uses Matrix algebra.
- Leave-one-out Cross Validation
- The maths here underpins almost all modern data science.

Questions

What is Regression (not) for?

- What role does Matrix Algebra have in advanced Machine Learning?
- How do you know one model is "better" than another?

Before we start: Vector Notation

- There are several choices of convention that we have to make
- Vectors of length k are also matrices, but are they $k \times 1$ or $1 \times k$?
$>$ We use $k \times 1$, i.e. column vectors
- Similarly there are choices about matrix derivatives
- We use derivative with respect to a column vector as a row vector
- Some resources differ and have everything transposed as a consequence

Covariance

- A reminder: understanding covariance and correlation is a prerequisite
- covariance is simply the second (central) moment:

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

- Recall that we typically use unbiased estimators which often slightly different from natural theoretical analogue. The sample covariance is:

$$
\operatorname{cov}(X, Y)=\frac{1}{N-1} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)
$$

Linear algebra view of covariance

- The covariance matrix of a random variable X
- Where X is a vector-valued RV with length k,
- has entries:

$$
\operatorname{Cov}(\mathrm{X})_{i j}=\operatorname{Cov}\left(\mathrm{X}_{i}, \mathrm{X}_{j}\right)=\mathbb{E}\left[\left(\mathrm{X}_{i}-\mu_{i}\right)\left(\mathrm{X}_{j}-\mu_{j}\right)\right]
$$

The matrix form for this is:

$$
\Sigma=\mathbb{E}\left[(\mathrm{X}-\mathbb{E}[\mathrm{X}])(\mathrm{X}-\mathbb{E}[\mathrm{X}])^{T}\right]
$$

- Where $\mu=\mathbb{E}[\mathrm{X}]$.

Correlation

- Correlation is simply a normalised measure of covariance.

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

- It takes values between -1 and 1 .
- Sample correlation uses the unbiased estimator of covariance, to account for the number of degrees of freedom in the data.
- Question: What should we (not) take the correlation of?
- See rank correlation, canonical correlation, etc.

Linear algebra view of correlation

- Division by standard deviations is required to correctly generalise the scalar correlation:

$$
\operatorname{Corr}(X, Y)=\frac{\mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}}
$$

- The matrix form for correlation is:

$$
\operatorname{Corr}(\mathrm{X})=(\operatorname{diag}(\Sigma))^{-1 / 2} \Sigma(\operatorname{diag}(\Sigma))^{-1 / 2}
$$

- The matrix inversion is not computationally challenging because it is for a diagonal matrix.

Examples

From Wikipedia: Correlation_and_dependence

1	0.8	0.4	0	-0.4	-0.8	-1
1	1	1		-1	-1	-1
	r	-	.--	\cdots		
0	0	0	0	0	0	0

Regression

- Regression, considers the relationship of a response variable as determined by one or more explanatory variables.
- Regression is designed to help make predictions of y when we observe x.
- It is a conditional model, and not a joint model of x and y. This is its strength.
- It predicts the best guess in squared error loss.

There is a probabilistic interpretation based on Normal Distributions.

(Not) Causality

- Regression is a often used as a tool to examine causality. . .
- A and B share a causal relationship if a regression for B given A has an association, conditional on ("controlling for") C ($\mathrm{C}=$ everything else)
This does not resolve whether A causes B, or B causes A
- Since we don't measure everything else, regression rarely establishes causality!
- Further assumptions are needed to make a causal connection. This is known as causal inference.

Discrete predictors

- If you include categorical/factor predictors, each level or unique value is used as a binary predictor.
- This is called One Hot Encoding.

Regression example

a) Scatter plot (mtcars MPG~HP)

b) Log-scale Scatter plot (mtcars MPG~HP)

Multiple Regression example

> lm(mpg ~ cyl + hp + wt,data=mtcars) \%>\% summary
Call:
lm (formula $=\mathrm{mpg} \sim \mathrm{cyl}+\mathrm{hp}+\mathrm{wt}$, data $=\mathrm{mtcars}$)
Residuals:

Min	1Q	Median	3Q	Max
-3.9290	-1.5598	-0.5311	1.1850	5.8986

Coefficients:

	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$				
(Intercept)	38.75179	1.78686	21.687	$<2 \mathrm{e}-16$	$* * *$
cyl	-0.94162	0.55092	-1.709	0.098480	
hp	-0.01804	0.01188	-1.519	0.140015	
wt	-3.16697	0.74058	-4.276	$0.000199 * * *$	

Signif. codes: $0{ }^{(* * * '} 0.001$ '**' $0.01^{\prime *} 0.05$ '.' 0.1 '

Important measures of regression

- R squared (and adjusted R squared): variance explained/total variance. This tells us how predictable y is.
- The coefficients β_{i}.
$>$ These should be compared to their error $\hat{\sigma}_{i}$.
The ratio is a t-value ($t_{i}=\beta_{i} / \hat{\sigma}_{i}$) from which a p-value can be calculated.
$>$ F statistic and F test p-value:
$>F$ is the ratio of the explained to unexplained variance, accounting for the degrees of freedom.
- The full model compared to a null in which there are no explanatory variables.
- Used in variable selection, ANOVA, etc.

Regression is analogous to linear algebra with noise

- Most problems in Linear Algebra can be seen as solving a system of linear equations:

$$
\mathrm{XA}+\mathrm{b}=0
$$

- Where X is an n by p matrix of data,
- A is an p by 1 matrix of coefficients,
- and $-\mathbf{b}$ is a n-vector of target values.
- However, in the presence of noise we seek the least-bad fit:

$$
\operatorname{argmin}_{(\mathrm{A}, \mathrm{~b})}\|\mathrm{XA}+\mathbf{b}\|_{2}^{2}=\sum_{i=1}^{N}\left(\mathbf{x}_{i} \mathrm{~A}+b_{i}\right)^{2}
$$

- i.e. we find A and b such that they minimise the distance (in the squared L_{2} norm)
- Linear algebra solves this very effectively!

Matrix form of least squares

- Consider data X^{\prime} with p^{\prime} features (columns) and n observations.
- Given the regression problem:

$$
\mathbf{y}=\mathrm{X}^{\prime} \beta^{\prime}+\mathbf{b}+\mathbf{e}
$$

$>$ to find:

- β^{\prime} (a matrix dimension $p^{\prime} \times 1$)
$>$ and b,
\downarrow to minimise 'error': in $e^{2}=\sum_{i=1}^{n} \epsilon_{i}^{2}$

Matrix form of least squares

- We construct a simpler representation by adding a constant feature:

$$
\mathrm{X}=\left[\begin{array}{llll}
1 & \mathrm{X}_{11} & \cdots & \mathrm{X}_{1 p^{\prime}} \\
& & \cdots & \\
1 & \mathrm{X}_{n 1} & \cdots & \mathrm{X}_{n p^{\prime}}
\end{array}\right]
$$

$>$ which has $p=p^{\prime}+1$ features.

- We now solve the analogous equation:

$$
\mathbf{y}=\mathbf{X} \beta+\mathbf{e}
$$

- which has the same solution but is in a more convenient form.

Mean Squared Error (MSE)

- The prediction error is:

$$
\mathbf{e}(\beta)=\mathbf{y}-\mathbf{X} \beta
$$

- Using the notation that \mathbf{e} is a p by 1 matrix
- The estimation error is written in matrix form:

$$
\operatorname{MSE}(\beta)=\frac{1}{n} \mathbf{e}^{T} \mathbf{e}
$$

$>$ Why? $\mathbf{e}^{T} \mathbf{e}=\sum_{i=1}^{n} e_{i}^{2}$

- Hence $\operatorname{MSE}(\beta)$ is a 1×1 matrix, i.e. a scalar, and $|\operatorname{MSE}(\beta)|=\operatorname{MSE}(\beta)$.
- Noticing this sort of thing makes the matrix algebra easier.
- We want to minimise this MSE with respect to the parameters β.

How to do the Matrix Algebra

Lecture 13 of Cosma Shalizi's notes is a really helpful reminder!

- Look at the Matrix Algebra Cheat Sheet - specifically:
- How does a transpose work?
- How do you re-order elements?
- How does a gradient work in linear and quadratic forms?

Minimising MSE

- Taking (vector) derivatives with respect to β :

$$
\begin{array}{rlr}
\nabla \operatorname{MSE}(\beta) & =\frac{1}{n}\left(\nabla \mathbf{y}^{T} \mathbf{y}-2 \nabla \beta^{T} \mathbf{X}^{T} \mathbf{y}+\nabla \beta^{T} \mathrm{X}^{T} \mathrm{X} \beta\right) \\
& = & \frac{1}{n}\left(0-2 \mathbf{X}^{T} \mathbf{y}+2 \mathbf{X}^{T} \mathrm{X} \beta\right) \tag{2}
\end{array}
$$

- which is zero at the optimum $\hat{\beta}$:

$$
\mathrm{X}^{T} \mathrm{X} \hat{\beta}-\mathrm{X}^{T} \mathbf{y}=0
$$

> with the solution:

$$
\hat{\beta}=\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \mathrm{X}^{T} \mathbf{y}
$$

- Exercise: For the case $p^{\prime}=1$, check that this solution is the same as you can find in regular linear algebra textbooks.

Motivation: Residuals

- The residual sum of squares for n predictions of a univariate y :

$$
R^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

- The expected value of the prediction error $\mathbb{E}\left(e^{2}\right)=R^{2} / n$.
- What happens if compare two models M_{1} and M_{2}, where M_{1} is a subset of M_{2} ?

Linear Models - Model selection

- For illustration, consider

$$
Y=\mathbf{x}_{1} A_{1}+\epsilon_{1}
$$

- and

$$
Y=\mathbf{x}_{1} A_{1}+\mathbf{x}_{2} A_{2}+\epsilon_{2}
$$

- Unless $\mathbf{x}_{2}=0$ or $\mathbf{x}_{2} \equiv \mathbf{x}_{1}$, then ϵ_{2}^{2} will be smaller than ϵ_{1}^{2}.
- This is an example of a more general rule: larger models always have better predictions.
- So prediction error is OK to use to fit models with the same dimension, but is incomplete for model selection.

Cross-Validation Motivation

- Usually we are not interested in properties of our sample.
- We instead wish to know how our inference will generalise to new samples.
- The most straight forward way to predict how a model generalises is to test in held-out data.
- Cross Validation is a procedure to leave-out some data for testing.
- How much data?
- Leave-one-out Cross-Validation (LOOCV) leaves out one datapoint at a time for testing.
> k-Fold Cross Validation (k-fold CV) keeps a fraction $(k-1) / k$ of the data for learning parameters and $1 / k$ for testing.

Prediction accuracy in linear regression

- In linear regression, the errors are

$$
\mathbf{e}=\mathbf{y}-\mathbf{X} \beta=\mathbf{y}-\hat{\mathbf{y}}
$$

- We show in Worksheet 2.2A that the expected MSE for the i-th datapoint is:

$$
\begin{align*}
\mathbb{E}\left(e_{i}^{2}\right) & = \tag{3}\\
& \mathbb{E}\left[\left(y_{i}-\hat{y}_{i}\right)^{T}\left(y_{i}-\hat{y}_{i}\right)\right]=\mathbb{E}\left[\left(y_{i}-\hat{y}_{i}\right)^{2}\right] \tag{4}\\
& =\operatorname{Var}\left[y_{i}\right]+\operatorname{Var}\left[\hat{y}_{i}\right]-2 \operatorname{Cov}\left[y_{i}, \hat{y}_{i}\right]+\left[\mathbb{E}\left(y_{i}\right)-\mathbb{E}\left(\hat{y}_{i}\right)\right]^{2}
\end{align*}
$$

- This is shown by rearranging the formula for $\operatorname{Var}\left[y_{i}-\hat{y}_{i}\right]$

Out-of-sample prediction accuracy in linear regression

- We can write the same thing when predicting an out-of-sample y_{i}^{\prime} :

$$
\begin{array}{rlr}
\mathbb{E}\left(e_{i}^{\prime 2}\right) & = & \mathbb{E}\left[\left(y_{i}^{\prime}-\hat{y}_{i}\right)^{T}\left(y_{i}^{\prime}-\hat{y}_{i}\right)\right] \\
& =\operatorname{Var}\left[y_{i}^{\prime}\right]+\operatorname{Var}\left[\hat{y}_{i}\right]-2 \operatorname{Cov}\left[y_{i}^{\prime}, \hat{y}_{i}\right]+\left[\mathbb{E}\left(y_{i}^{\prime}\right)-\mathbb{E}\left(\hat{y}_{i}\right)\right]^{2} \tag{6}
\end{array}
$$

- But out-of-sample, $\operatorname{Cov}\left[y_{i}^{\prime}, \hat{y}_{i}\right]=0$ whereas within-sample, $\operatorname{Cov}\left[y_{i}, \hat{y}_{i}\right] \neq 0$.
- Therefore:

$$
\mathbb{E}\left(e_{i}^{\prime 2}\right)=\mathbb{E}\left(e_{i}^{2}\right)+2 \operatorname{Cov}\left[y_{i}, \hat{y}_{i}\right]
$$

Quantifying Out-of-sample prediction accuracy

- The mean out-of-sample prediction error can be rewritten (see Appendix) as:

$$
\mathbb{E}\left(e^{\prime 2}\right)=n^{-1} \sum_{i=1}^{n} e_{i}^{\prime 2}=n^{-1} \sum_{i=1}^{n} e_{i}^{2}+2 n^{-1} \sigma^{2} p
$$

- The optimism is defined as $2 n^{-1} \sigma^{2} p$.
- The optimism grows with σ^{2} and p but shrinks with n. It is used to define the model selection criteria ΔC_{p} which is minimised:

$$
\Delta C_{p}=M S E_{1}-M S E_{2}+\frac{2}{n} \hat{\sigma}^{2}\left(p_{1}-p_{2}\right)
$$

Linear model optimism and AIC

- Minimising Akaike's Information Criterion:

$$
A I C=-2 \mathbb{L}(\hat{\theta})+2 \operatorname{Dim}(\theta)
$$

$>$ reduces to maximising ΔC_{p} when the Likelihood \mathbb{L} is a Normal distribution.

- There are many other Information Criteria. . .

LOOCV

- We write a statistic \hat{s} based on all data $\{y\}$ except i as $\hat{s}^{(-i)}$ and the data is $\{y\}^{(-i)}$.
- For a general loss function we can write:

$$
L O O C V=\frac{1}{n} \sum_{i=1}^{n} \operatorname{Loss}\left(y_{i} ; \hat{\theta} \mid y^{(-i)}\right)
$$

- i.e. we evaluate the loss function for each datapoint using the estimate from the remaining data.
- NB A loss function is something that we choose the parameters θ to minimise. It can be:
- the MSE,
- the (negative log) likelihood,
- a penalised version of these,
- or any other convenient quantity.

LOOCV for linear models

- For the MSE of a linear model we can write:

$$
L O O C V=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}^{(-i)}\right)^{2}
$$

- It is not particularly straightforward ${ }^{1}$ to show that:

$$
L O O C V=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{y_{i}-\hat{y}_{i}}{1-H_{i i}}\right)^{2}
$$

- Where H is a function of X only (see Appendix).
- This is a very important quantity, often called the Studentized residual
- i.e. the LOOCV can be directly computed from a regression containing all data:
> "downweighting" low-leverage data
- "upweighting" high-leverage (hard to predict) data.
${ }^{1}$ Our references avoid proving this, but do discuss the motivation. Proofs are
available but beyond scope.

Leave-one-out Cross-Validation

- Leaving out a single datapoint is going to be insufficient unless the data are independent.
- The real world is rarely completely independent.
- However, there is often a computationally convenient way to compute LOOCV, and it is still better than leaving nothing out. It converges to C_{p} for large n.
- Analogous tricks work for:
- Linear models including Best Linear Unbiased Predictors (BLUPs)
- Kernel methods
- Nearest neighbour methods
- And others

Asymptotics

- Here are some facts about the asymptotic behaviour of LOOCV:
- As $n \rightarrow \infty$, the expected out-of-sample MSE of the model picked by LOO cross-validation is close to that of the best model considered.
- As $n \rightarrow \infty$, if the true model is among those being compared, LOOCV tends to pick a strictly larger model than the truth.
- LOOCV is not the right tool for choosing the right model.
- It is however an excellent tool for choosing the model with the best out-of-sample predictive power.
- ... when the test data come from the same distribution as the training data!

Implications

- Matrix form is a massive simplification of complex algebra
- It is easy to check that e.g. dimensions make sense
- These vector calculations are repeated in many machine-learning methods
- The details change but the principle remains
- Linear-Algebra loss minimisation techniques are extremely important
- They often sit inside a wider argument, e.g. updated conditional on some other parameters

Reflection

- By the end of the course, you should:
- Be able to define correlation and regression in multivariate context
- Be able to perform basic calculations using these concepts
- Be able to extend intuition about their application.
- Be able to follow the reasoning in a paper where things get complicated.
- Matrix algebra is worth reading up on!
- Describe it for example in your assessments' reflection.

Signposting

- Make sure to look at 02.1-Regression.R
- The mathematics behind Modern Regression is analogous to the mathematics underpinning scalable Machine Learning. It is very important.
- For accessible material see Cosma Shalizi's Modern Regression Lectures (Lectures 13-14)
- Further reading in chapters 2.3 and 3.2 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani)
- Next up: 2.2 Statistical Testing

Appendix: The Hat Matrix

- There is an important and response independent quantity hidden in the prediction:

$$
\mathrm{H}=\mathrm{X}\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \mathrm{X}^{T}
$$

- The fitted values are:

$$
\hat{\mathbf{y}}=\mathrm{X} \hat{\beta}=\mathrm{X}\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \mathrm{X}^{T} \mathbf{y}=\mathrm{Hy}
$$

- H is dimension $N \times N$
- H "projects" y into the fitted value space $\hat{\mathbf{y}}$
- Put the "hat" on y

Appendix: Properties of the Hat Matrix

- Influence: $\frac{\partial \hat{y}_{i}}{\partial y_{j}}=\mathrm{H}_{i j}$. So H controls how much a change in one observation changes the estimates of each other point.
∇ symmetry: $\mathrm{H}^{T}=\mathrm{H}$. So influence is symmetric.
- Idempotency: $\mathrm{H}^{2}=\mathrm{H}$. So the predicted value for any projected point is the predicted value itself.
- You should read up on these and other vector algebra properties.

Appendix: Residuals and the Hat Matrix

- The residuals can be written:

$$
\mathbf{e}=\mathbf{y}-\mathrm{Hy}=(\mathrm{I}-\mathrm{H}) \mathbf{y}
$$

- $\mathrm{I}-\mathrm{H}$ is also symmetric and idempotent, and can also be interpreted in terms of Influence.
- Because of this,

$$
\operatorname{MSE}(\hat{\beta})=\frac{1}{n} \mathbf{y}^{T}(1-\mathrm{H})^{T}(1-\mathrm{H}) \mathbf{y}=\frac{1}{n} \mathbf{y}^{T}(1-\mathrm{H}) \mathbf{y}
$$

Appendix: Expectations

- If the data were generated by our model(!) then they are described by an RV Y (an n-vector):

$$
\mathbf{Y}_{i}=\mathbf{x}_{i} \beta+\epsilon_{i}
$$

- \mathbf{x}_{i} is still a vector but not a Random Variable!
$\downarrow \epsilon$ is an $n \times 1$ matrix of RVs with mean $\mathbf{0}$ and covariance $\sigma_{s}^{2} \mathrm{I}$.
- From this it is straightforward to show that the fitted values are unbiased:

$$
\mathbb{E}[\hat{\mathbf{y}}]=\mathbb{E}[\mathrm{HY}]=\mathbf{x} \beta
$$

- using the properties of Expectations with the symmetry and idempotency of H .

Appendix: Covariance

- Similarly, it is straightforward to show that

$$
\operatorname{Var}[\hat{\mathbf{y}}]=\sigma_{s}^{2} \mathrm{H}
$$

using the properties of Variances with the symmetry and idempotency of H .

- In other words, the covariance of the fitted values is determined entirely by the structure of the covariates, via the Hat matrix.

Appendix: Quantifying Out-of-sample prediction accuracy

$\triangleright>$ For the second term in $E\left(e_{i}^{\prime 2}\right)=\mathbb{E}\left(e_{i}^{2}\right)+2 \operatorname{Cov}\left[y_{i}, \hat{y}_{i}\right]$,

- We're now able to compute the covariance between y_{i} and its prediction \hat{y}_{i} :

$$
\operatorname{Cov}\left[y_{i}, \hat{y}_{i}\right]=\sigma^{2} \mathrm{H}_{i i}
$$

- The mean out-of-sample prediction error is

$$
\mathbb{E}\left(e^{\prime 2}\right)=n^{-1} \sum_{i=1}^{n} e_{i}^{\prime 2}=n^{-1} \sum_{i=1}^{n} e_{i}^{2}+2 n^{-1} \operatorname{tr}(\mathrm{H})
$$

- We show in Worksheet 2.2A that $\operatorname{tr}(\mathrm{H})=\sigma^{2} p$ where $p=$ number of predictors.
- The optimism is defined as $2 n^{-1} \sigma^{2} p$.
- The optimism grows with σ^{2} and p but shrinks with n. It is used to define the model selection criteria ΔC_{p} which is minimised:

$$
\Delta C_{p}=M S E_{1}-M S E_{2}+\frac{2}{n} \hat{\sigma}^{2}\left(p_{1}-p_{2}\right)
$$

