Towards Modern Regression

Daniel Lawson University of Bristol

Lecture 02.1 (v2.0.0)

Signposting

This lecture covers:

- Classical regression
- Towards Modern Regression the vectorised version, which uses Matrix algebra.
- Leave-one-out Cross Validation

▶ The maths here underpins almost all modern data science.

Questions

- ▶ What is Regression (not) for?
- What role does Matrix Algebra have in advanced Machine Learning?
- How do you know one model is "better" than another?

Before we start: Vector Notation

- There are several choices of convention that we have to make
- Vectors of length k are also matrices, but are they k × 1 or 1 × k?
- We use $k \times 1$, i.e. column vectors
- Similarly there are choices about matrix derivatives
- We use derivative with respect to a column vector as a row vector
- Some resources differ and have everything transposed as a consequence

Covariance

- A reminder: understanding covariance and correlation is a prerequisite
- covariance is simply the second (central) moment:

$$\operatorname{cov}(X,Y) = \mathbb{E}\left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) \right]$$

Recall that we typically use unbiased estimators which often slightly different from natural theoretical analogue. The sample covariance is:

$$cov(X,Y) = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})$$

Linear algebra view of covariance

The covariance matrix of a random variable X
 Where X is a vector-valued RV with length k,
 has entries:

$$\operatorname{Cov}(\mathbf{X})_{ij} = \operatorname{Cov}(\mathbf{X}_i, \mathbf{X}_j) = \mathbb{E}[(\mathbf{X}_i - \mu_i)(\mathbf{X}_j - \mu_j)].$$

The matrix form for this is:

$$\Sigma = \mathbb{E}[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])^T],$$

• Where $\mu = \mathbb{E}[X]$.

Correlation

Correlation is simply a normalised measure of covariance.

$$\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}$$

It takes values between -1 and 1.

- Sample correlation uses the unbiased estimator of covariance, to account for the number of degrees of freedom in the data.
- **Question**: What should we (not) take the correlation of?
 - See rank correlation, canonical correlation, etc.

Linear algebra view of correlation

Division by standard deviations is required to correctly generalise the scalar correlation:

$$\operatorname{Corr}(X,Y) = \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}.$$

The matrix form for correlation is:

$$\operatorname{Corr}(\mathbf{X}) = (\operatorname{diag}(\Sigma))^{-1/2} \Sigma (\operatorname{diag}(\Sigma))^{-1/2}$$

The matrix inversion is not computationally challenging because it is for a diagonal matrix.

Examples

From Wikipedia: Correlation_and_dependence

Regression

- Regression, considers the relationship of a response variable as determined by one or more explanatory variables.
 - Regression is designed to help make predictions of y when we observe x.
 - It is a conditional model, and not a joint model of x and y. This is its strength.
 - It predicts the best guess in squared error loss.
 - There is a probabilistic interpretation based on Normal Distributions.

(Not) Causality

Regression is a often used as a tool to examine causality...

- A and B share a causal relationship if a regression for B given A has an association, conditional on ("controlling for") C (C=everything else)
- This does not resolve whether A causes B, or B causes A
- Since we don't measure everything else, regression rarely establishes causality!
- Further assumptions are needed to make a causal connection. This is known as causal inference.

Discrete predictors

- If you include categorical/factor predictors, each level or unique value is used as a binary predictor.
- ► This is called **One Hot Encoding**.

Regression example

Multiple Regression example

> lm(mpg ~ cyl + hp + wt,data=mtcars) %>% summary

Call: lm(formula = mpg ~ cyl + hp + wt, data = mtcars)

Residuals:

Min 1Q Median 3Q Max -3.9290 -1.5598 -0.5311 1.1850 5.8986

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 38.75179 1.78686 21.687 < 2e-16 *** cyl -0.94162 0.55092 -1.709 0.098480 . hp -0.01804 0.01188 -1.519 0.140015 wt -3.16697 0.74058 -4.276 0.000199 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

Important measures of regression

R squared (and adjusted R squared): variance explained/total variance. This tells us how predictable y is.

- The coefficients β_i .
 - These should be compared to their error $\hat{\sigma}_i$.
 - The ratio is a t-value (t_i = β_i/σ̂_i) from which a p-value can be calculated.
- F statistic and F test p-value:
 - F is the ratio of the explained to unexplained variance, accounting for the degrees of freedom.
 - The full model compared to a null in which there are no explanatory variables.
 - Used in variable selection, ANOVA, etc.

Regression is analogous to linear algebra with noise

Most problems in Linear Algebra can be seen as solving a system of linear equations:

$$XA + b = 0.$$

Where X is an n by p matrix of data,

A is an p by 1 matrix of coefficients,

and -b is a n-vector of target values.

However, in the presence of noise we seek the least-bad fit:

$$\operatorname{argmin}_{(\mathbf{A},\mathbf{b})} ||\mathbf{X}\mathbf{A} + \mathbf{b}||_2^2 = \sum_{i=1}^N (\mathbf{x}_i \mathbf{A} + b_i)^2$$

 i.e. we find A and b such that they minimise the distance (in the squared L₂ norm)

Linear algebra solves this very effectively!

Matrix form of least squares

- Consider data X' with p' features (columns) and n observations.
- Given the regression problem:

$$\mathbf{y} = \mathbf{X}' \boldsymbol{\beta}' + \mathbf{b} + \mathbf{e}$$

to find:

- β' (a matrix dimension $p' \times 1$)
- \blacktriangleright and b,
- ▶ to minimise 'error': in $e^2 = \sum_{i=1}^n \epsilon_i^2$

Matrix form of least squares

We construct a simpler representation by adding a constant feature:

$$\mathbf{X} = \begin{bmatrix} 1 & \mathbf{X}_{11} & \cdots & \mathbf{X}_{1p'} \\ & & \cdots \\ 1 & \mathbf{X}_{n1} & \cdots & \mathbf{X}_{np'} \end{bmatrix}$$

▶ which has p = p' + 1 features.
▶ We now solve the analogous equation:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

which has the same solution but is in a more convenient form.

Mean Squared Error (MSE)

The prediction error is:

$$\mathbf{e}(\beta) = \mathbf{y} - \mathbf{X}\beta$$

Using the notation that e is a p by 1 matrix
The estimation error is written in matrix form:

$$MSE(\beta) = \frac{1}{n} \mathbf{e}^T \mathbf{e}$$

$$\blacktriangleright$$
 Why? $\mathbf{e}^T \mathbf{e} = \sum_{i=1}^n e_i^2$

 Hence MSE(β) is a 1 × 1 matrix, i.e. a scalar, and |MSE(β)| = MSE(β).

Noticing this sort of thing makes the matrix algebra easier.

We want to minimise this MSE with respect to the parameters β.

How to do the Matrix Algebra

Lecture 13 of Cosma Shalizi's notes is a really helpful reminder!

Look at the Matrix Algebra Cheat Sheet - specifically:

- How does a transpose work?
- How do you re-order elements?
- How does a gradient work in linear and quadratic forms?

Minimising MSE

• Taking (vector) derivatives with respect to β :

$$\nabla \text{MSE}(\beta) = \frac{1}{n} (\nabla \mathbf{y}^T \mathbf{y} - 2\nabla \beta^T \mathbf{X}^T \mathbf{y} + \nabla \beta^T \mathbf{X}^T \mathbf{X}\beta) \quad (1)$$
$$= \frac{1}{n} (0 - 2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X}\beta) \quad (2)$$

• which is zero at the optimum $\hat{\beta}$:

$$\mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} - \mathbf{X}^T \mathbf{y} = 0$$

with the solution:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.$$

Exercise: For the case p' = 1, check that this solution is the same as you can find in regular linear algebra textbooks.

Motivation: Residuals

The residual sum of squares for n predictions of a univariate y:

$$R^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

▶ The expected value of the prediction error E(e²) = R²/n.
 ▶ What happens if compare two models M₁ and M₂, where M₁ is a subset of M₂?

Linear Models - Model selection

For illustration, consider

$$Y = \mathbf{x}_1 A_1 + \epsilon_1$$

and

$$Y = \mathbf{x}_1 A_1 + \mathbf{x}_2 A_2 + \epsilon_2.$$

• Unless $\mathbf{x}_2 = 0$ or $\mathbf{x}_2 \equiv \mathbf{x}_1$, then ϵ_2^2 will be smaller than ϵ_1^2 .

- This is an example of a more general rule: larger models always have better predictions.
- So prediction error is OK to use to fit models with the same dimension, but is incomplete for model selection.

Cross-Validation Motivation

Usually we are not interested in properties of our sample.

- We instead wish to know how our inference will generalise to new samples.
- The most straight forward way to predict how a model generalises is to test in held-out data.
- Cross Validation is a procedure to leave-out some data for testing.
- How much data?
 - Leave-one-out Cross-Validation (LOOCV) leaves out one datapoint at a time for testing.
 - ► k-Fold Cross Validation (k-fold CV) keeps a fraction (k − 1)/k of the data for learning parameters and 1/k for testing.

Prediction accuracy in linear regression

In linear regression, the errors are

$$\mathbf{e} = \mathbf{y} - \mathbf{X}\boldsymbol{\beta} = \mathbf{y} - \hat{\mathbf{y}}$$

We show in Worksheet 2.2A that the expected MSE for the *i*-th datapoint is:

$$\mathbb{E}(e_i^2) = \mathbb{E}\left[(y_i - \hat{y}_i)^T (y_i - \hat{y}_i)\right] = \mathbb{E}\left[(y_i - \hat{y}_i)^2\right]$$

$$= \operatorname{Var}[y_i] + \operatorname{Var}[\hat{y}_i] - 2\operatorname{Cov}[y_i, \hat{y}_i] + [\mathbb{E}(y_i) - \mathbb{E}(\hat{y}_i)]^2$$

$$(4)$$

• This is shown by rearranging the formula for $\operatorname{Var}[y_i - \hat{y}_i]$

Out-of-sample prediction accuracy in linear regression

We can write the same thing when predicting an out-of-sample y'_i:

$$\mathbb{E}(e'_{i}^{2}) = \mathbb{E}\left[(y'_{i} - \hat{y}_{i})^{T}(y'_{i} - \hat{y}_{i})\right]$$

$$= \operatorname{Var}[y'_{i}] + \operatorname{Var}[\hat{y}_{i}] - 2\operatorname{Cov}[y'_{i}, \hat{y}_{i}] + [\mathbb{E}(y'_{i}) - \mathbb{E}(\hat{y}_{i})]^{2}$$
(6)

▶ But out-of-sample, Cov[y'_i, ŷ_i] = 0 whereas within-sample, Cov[y_i, ŷ_i] ≠ 0.
 ▶ Therefore:

$$\mathbb{E}(e'_i^2) = \mathbb{E}(e_i^2) + 2\mathrm{Cov}[y_i, \hat{y}_i]$$

Quantifying Out-of-sample prediction accuracy

The mean out-of-sample prediction error can be rewritten (see Appendix) as:

$$\mathbb{E}(e'^2) = n^{-1} \sum_{i=1}^n e'^2_i = n^{-1} \sum_{i=1}^n e^2_i + 2n^{-1} \sigma^2 p$$

- The optimism is defined as $2n^{-1}\sigma^2 p$.
- The optimism grows with σ² and p but shrinks with n. It is used to define the model selection criteria ΔC_p which is minimised:

$$\Delta C_p = MSE_1 - MSE_2 + \frac{2}{n}\hat{\sigma}^2(p_1 - p_2)$$

Linear model optimism and AIC

Minimising Akaike's Information Criterion:

$$AIC = -2\mathbb{L}(\hat{\theta}) + 2\mathrm{Dim}(\theta)$$

- ▶ reduces to maximising ΔC_p when the Likelihood \mathbb{L} is a Normal distribution.
- There are many other Information Criteria...

LOOCV

- We write a statistic ŝ based on all data {y} except i as ŝ^(−i) and the data is {y}^(−i).
- For a general loss function we can write:

$$LOOCV = \frac{1}{n} \sum_{i=1}^{n} \text{Loss}\left(y_i; \hat{\theta} | y^{(-i)}\right)$$

- i.e. we evaluate the loss function for each datapoint using the estimate from the remaining data.
- NB A loss function is something that we choose the parameters θ to minimise. It can be:
 - the MSE,
 - the (negative log) likelihood,
 - a penalised version of these,
 - or any other convenient quantity.

LOOCV for linear models

► For the MSE of a linear model we can write:

$$LOOCV = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i^{(-i)})^2$$

It is not particularly straightforward¹ to show that:

$$LOOCV = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - H_{ii}} \right)^2$$

- ▶ Where H is a function of X only (see Appendix).
- This is a very important quantity, often called the Studentized residual
- i.e. the LOOCV can be directly computed from a regression containing all data:
 - "downweighting" low-leverage data
 - "upweighting" high-leverage (hard to predict) data.

¹Our references avoid proving this, but do discuss the motivation. Proofs are available but beyond scope.

Leave-one-out Cross-Validation

Leaving out a single datapoint is going to be insufficient unless the data are independent.

The real world is rarely completely independent.

- However, there is often a computationally convenient way to compute LOOCV, and it is still better than leaving nothing out. It converges to C_p for large n.
- Analogous tricks work for:
 - Linear models including Best Linear Unbiased Predictors (BLUPs)
 - Kernel methods
 - Nearest neighbour methods
 - And others

Asymptotics

Here are some facts about the asymptotic behaviour of LOOCV:

- As n → ∞, the expected out-of-sample MSE of the model picked by LOO cross-validation is close to that of the best model considered.
- As n → ∞, if the true model is among those being compared, LOOCV tends to pick a strictly larger model than the truth.
- ► LOOCV is not the right tool for choosing the **right model**.
- It is however an excellent tool for choosing the model with the best out-of-sample predictive power.
- ... when the test data come from the same distribution as the training data!

Implications

- Matrix form is a massive simplification of complex algebra
- It is easy to check that e.g. dimensions make sense
- These vector calculations are repeated in many machine-learning methods
- The details change but the principle remains
- Linear-Algebra loss minimisation techniques are extremely important
- They often sit inside a wider argument, e.g. updated conditional on some other parameters

Reflection

Be able to define correlation and regression in multivariate context

Be able to perform basic calculations using these concepts

- Be able to extend intuition about their application.
- Be able to follow the reasoning in a paper where things get complicated.
- Matrix algebra is worth reading up on!
 - Describe it for example in your assessments' reflection.

Signposting

- Make sure to look at 02.1-Regression.R
- The mathematics behind Modern Regression is analogous to the mathematics underpinning scalable Machine Learning. It is very important.
- For accessible material see Cosma Shalizi's Modern Regression Lectures (Lectures 13-14)
- Further reading in chapters 2.3 and 3.2 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani)
- Next up: 2.2 Statistical Testing

Appendix: The Hat Matrix

There is an important and response independent quantity hidden in the prediction:

$$\mathbf{H} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$$

The fitted values are:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{H}\mathbf{y}$$

H is dimension N × N
H "projects" y into the fitted value space ŷ
Put the "hat" on y

Appendix: Properties of the Hat Matrix

▶ Influence: $\frac{\partial \hat{y}_i}{\partial y_j} = H_{ij}$. So H controls how much a change in one observation changes the estimates of each other point.

symmetry: $H^T = H$. So influence is symmetric.

- Idempotency: H² = H. So the predicted value for any projected point is the predicted value itself.
- You should read up on these and other vector algebra properties.

Appendix: Residuals and the Hat Matrix

The residuals can be written:

$$\mathbf{e} = \mathbf{y} - \mathbf{H}\mathbf{y} = (\mathbf{I} - \mathbf{H})\mathbf{y}$$

 I – H is also symmetric and idempotent, and can also be interpreted in terms of Influence.

Because of this,

$$MSE(\hat{\beta}) = \frac{1}{n} \mathbf{y}^T (1 - \mathbf{H})^T (1 - \mathbf{H}) \mathbf{y} = \frac{1}{n} \mathbf{y}^T (1 - \mathbf{H}) \mathbf{y}$$

Appendix: Expectations

If the data were generated by our model(!) then they are described by an RV Y (an *n*-vector):

$$\mathbf{Y}_i = \mathbf{x}_i \beta + \epsilon_i$$

x_i is still a vector but not a Random Variable!

- ϵ is an $n \times 1$ matrix of RVs with mean **0** and covariance $\sigma_s^2 I$.
- From this it is straightforward to show that the fitted values are unbiased:

$$\mathbb{E}[\hat{\mathbf{y}}] = \mathbb{E}[\mathbf{H}\mathbf{Y}] = \mathbf{x}\beta$$

 using the properties of Expectations with the symmetry and idempotency of H.

Similarly, it is straightforward to show that

$$\operatorname{Var}[\hat{\mathbf{y}}] = \sigma_s^2 \mathbf{H}$$

using the properties of Variances with the symmetry and idempotency of $\ensuremath{\mathrm{H}}$.

In other words, the covariance of the fitted values is determined entirely by the structure of the covariates, via the Hat matrix. Appendix: Quantifying Out-of-sample prediction accuracy

- For the second term in $\overline{E({e'}_i^2)} = \mathbb{E}(e_i^2) + 2\text{Cov}[y_i, \hat{y}_i]$,
- We're now able to compute the covariance between y_i and its prediction ŷ_i:

$$\operatorname{Cov}[y_i, \hat{y}_i] = \sigma^2 \mathbf{H}_{ii}$$

The mean out-of-sample prediction error is

$$\mathbb{E}(e'^2) = n^{-1} \sum_{i=1}^n e'^2_i = n^{-1} \sum_{i=1}^n e^2_i + 2n^{-1} \operatorname{tr}(\mathbf{H})$$

- We show in Worksheet 2.2A that $tr(H) = \sigma^2 p$ where *p*=number of predictors.
- The optimism is defined as $2n^{-1}\sigma^2 p$.
- The optimism grows with σ² and p but shrinks with n. It is used to define the model selection criteria ΔC_p which is minimised:

$$\Delta C_p = MSE_1 - MSE_2 + \frac{2}{n}\hat{\sigma}^2(p_1 - p_2)$$