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Signposting

I This lecture covers:
I Classical regression
I Towards Modern Regression - the vectorised version, which uses

Matrix algebra.
I Leave-one-out Cross Validation

I The maths here underpins almost all modern data science.



Questions

I What is Regression (not) for?
I What role does Matrix Algebra have in advanced Machine

Learning?
I How do you know one model is “better” than another?



Before we start: Vector Notation

I There are several choices of convention that we have to make
I Vectors of length k are also matrices, but are they k × 1 or

1× k?
I We use k × 1, i.e. column vectors
I Similarly there are choices about matrix derivatives
I We use derivative with respect to a column vector as a row

vector
I Some resources differ and have everything transposed as a

consequence



Covariance

I A reminder: understanding covariance and correlation is a
prerequisite

I covariance is simply the second (central) moment:

cov(X,Y ) = E [(X − E[X])(Y − E[Y ])]

I Recall that we typically use unbiased estimators which often
slightly different from natural theoretical analogue. The
sample covariance is:

cov(X,Y ) = 1
N − 1

N∑
i=1

(Xi − X̄)(Yi − Ȳ )



Linear algebra view of covariance

I The covariance matrix of a random variable X
I Where X is a vector-valued RV with length k,
I has entries:

Cov(X)ij = Cov(Xi,Xj) = E[(Xi − µi)(Xj − µj)].

I The matrix form for this is:

Σ = E[(X− E[X])(X− E[X])T ],

I Where µ = E[X].



Correlation

I Correlation is simply a normalised measure of covariance.

ρX,Y = cov(X,Y )
σXσY

I It takes values between -1 and 1.
I Sample correlation uses the unbiased estimator of covariance,

to account for the number of degrees of freedom in the data.
I Question: What should we (not) take the correlation of?

I See rank correlation, canonical correlation, etc.



Linear algebra view of correlation

I Division by standard deviations is required to correctly
generalise the scalar correlation:

Corr(X,Y ) = E[(X − µX)(Y − µY )]
σXσY

.

I The matrix form for correlation is:

Corr(X) = (diag(Σ))−1/2 Σ (diag(Σ))−1/2

I The matrix inversion is not computationally challenging
because it is for a diagonal matrix.



Examples

From Wikipedia: Correlation_and_dependence

https://en.wikipedia.org/wiki/Correlation_and_dependence#/media/File:Correlation_examples2.svg


Regression

I Regression, considers the relationship of a response variable as
determined by one or more explanatory variables.
I Regression is designed to help make predictions of y when we

observe x.
I It is a conditional model, and not a joint model of x and y.

This is its strength.
I It predicts the best guess in squared error loss.
I There is a probabilistic interpretation based on Normal

Distributions.



(Not) Causality

I Regression is a often used as a tool to examine causality. . .
I A and B share a causal relationship if a regression for B given A

has an association, conditional on (“controlling for”) C
(C=everything else)

I This does not resolve whether A causes B, or B causes A
I Since we don’t measure everything else, regression rarely

establishes causality!
I Further assumptions are needed to make a causal connection.

This is known as causal inference.



Discrete predictors

I If you include categorical/factor predictors, each level or
unique value is used as a binary predictor.

I This is called One Hot Encoding.



Regression example



Multiple Regression example
> lm(mpg ~ cyl + hp + wt,data=mtcars) %>% summary

Call:
lm(formula = mpg ~ cyl + hp + wt, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-3.9290 -1.5598 -0.5311 1.1850 5.8986

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 38.75179 1.78686 21.687 < 2e-16 ***
cyl -0.94162 0.55092 -1.709 0.098480 .
hp -0.01804 0.01188 -1.519 0.140015
wt -3.16697 0.74058 -4.276 0.000199 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.512 on 28 degrees of freedom
Multiple R-squared: 0.8431, Adjusted R-squared: 0.8263
F-statistic: 50.17 on 3 and 28 DF, p-value: 2.184e-11



Important measures of regression

I R squared (and adjusted R squared): variance explained/total
variance. This tells us how predictable y is.

I The coefficients βi.
I These should be compared to their error σ̂i.
I The ratio is a t-value (ti = βi/σ̂i) from which a p-value can be

calculated.
I F statistic and F test p-value:

I F is the ratio of the explained to unexplained variance,
accounting for the degrees of freedom.

I The full model compared to a null in which there are no
explanatory variables.

I Used in variable selection, ANOVA, etc.



Regression is analogous to linear algebra with noise

I Most problems in Linear Algebra can be seen as solving a
system of linear equations:

XA + b = 0.

I Where X is an n by p matrix of data,
I A is an p by 1 matrix of coefficients,
I and −b is a n-vector of target values.

I However, in the presence of noise we seek the least-bad fit:

argmin(A,b)||XA + b||22 =
N∑

i=1
(xiA + bi)2

I i.e. we find A and b such that they minimise the distance (in
the squared L2 norm)

I Linear algebra solves this very effectively!



Matrix form of least squares

I Consider data X′ with p′ features (columns) and n
observations.

I Given the regression problem:

y = X′β′ + b + e

I to find:
I β′ (a matrix dimension p′ × 1)
I and b,
I to minimise ‘error’: in e2 =

∑n
i=1 ε

2
i



Matrix form of least squares

I We construct a simpler representation by adding a constant
feature:

X =

1 X11 · · · X1p′

· · ·
1 Xn1 · · · Xnp′


I which has p = p′ + 1 features.

I We now solve the analogous equation:

y = Xβ + e

I which has the same solution but is in a more convenient form.



Mean Squared Error (MSE)

I The prediction error is:

e(β) = y−Xβ

I Using the notation that e is a p by 1 matrix
I The estimation error is written in matrix form:

MSE(β) = 1
n

eT e

I Why? eT e =
∑n

i=1 e
2
i

I Hence MSE(β) is a 1× 1 matrix, i.e. a scalar, and
|MSE(β)| = MSE(β).

I Noticing this sort of thing makes the matrix algebra easier.
I We want to minimise this MSE with respect to the parameters
β.



How to do the Matrix Algebra

Lecture 13 of Cosma Shalizi’s notes is a really helpful reminder!
I Look at the Matrix Algebra Cheat Sheet - specifically:

I How does a transpose work?
I How do you re-order elements?
I How does a gradient work in linear and quadratic forms?

http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/13/lecture-13.pdf
https://dsbristol.github.io/dst/coursebook/02-MatrixCheatsheet.html


Minimising MSE

I Taking (vector) derivatives with respect to β:

∇MSE(β) = 1
n

(∇yT y− 2∇βT XT y +∇βT XT Xβ) (1)

= 1
n

(0− 2XT y + 2XT Xβ) (2)

I which is zero at the optimum β̂:

XT Xβ̂ −XT y = 0

I with the solution:

β̂ = (XT X)−1XT y.

I Exercise: For the case p′ = 1, check that this solution is the
same as you can find in regular linear algebra textbooks.



Motivation: Residuals

I The residual sum of squares for n predictions of a univariate
y:

R2 =
n∑

i=1
(yi − ŷi)2

I The expected value of the prediction error E(e2) = R2/n.
I What happens if compare two models M1 and M2, where
M1 is a subset of M2?



Linear Models - Model selection

I For illustration, consider

Y = x1A1 + ε1

I and
Y = x1A1 + x2A2 + ε2.

I Unless x2 = 0 or x2 ≡ x1, then ε22 will be smaller than ε21.
I This is an example of a more general rule: larger models

always have better predictions.
I So prediction error is OK to use to fit models with the same

dimension, but is incomplete for model selection.



Cross-Validation Motivation

I Usually we are not interested in properties of our sample.
I We instead wish to know how our inference will generalise to

new samples.
I The most straight forward way to predict how a model

generalises is to test in held-out data.
I Cross Validation is a procedure to leave-out some data for

testing.
I How much data?

I Leave-one-out Cross-Validation (LOOCV) leaves out one
datapoint at a time for testing.

I k-Fold Cross Validation (k-fold CV) keeps a fraction
(k − 1)/k of the data for learning parameters and 1/k for
testing.



Prediction accuracy in linear regression

I In linear regression, the errors are

e = y−Xβ = y− ŷ

I We show in Worksheet 2.2A that the expected MSE for the
i-th datapoint is:

E(e2
i ) = E

[
(yi − ŷi)T (yi − ŷi)

]
= E

[
(yi − ŷi)2

]
(3)

= Var[yi] + Var[ŷi]− 2Cov[yi, ŷi] + [E(yi)− E(ŷi)]2
(4)

I This is shown by rearranging the formula for Var[yi − ŷi]



Out-of-sample prediction accuracy in linear regression

I We can write the same thing when predicting an
out-of-sample y′i:

E(e′2i ) = E
[
(y′i − ŷi)T (y′i − ŷi)

]
(5)

= Var[y′i] + Var[ŷi]− 2Cov[y′i, ŷi] + [E(y′i)− E(ŷi)]2
(6)

I But out-of-sample, Cov[y′i, ŷi] = 0 whereas within-sample,
Cov[yi, ŷi] 6= 0.

I Therefore:
E(e′2i ) = E(e2

i ) + 2Cov[yi, ŷi]



Quantifying Out-of-sample prediction accuracy

I The mean out-of-sample prediction error can be rewritten (see
Appendix) as:

E(e′2) = n−1
n∑

i=1
e′i

2 = n−1
n∑

i=1
e2

i + 2n−1σ2p

I The optimism is defined as 2n−1σ2p.
I The optimism grows with σ2 and p but shrinks with n. It is

used to define the model selection criteria ∆Cp which is
minimised:

∆Cp = MSE1 −MSE2 + 2
n
σ̂2(p1 − p2)



Linear model optimism and AIC

I Minimising Akaike’s Information Criterion:

AIC = −2L(θ̂) + 2Dim(θ)

I reduces to maximising ∆Cp when the Likelihood L is a Normal
distribution.

I There are many other Information Criteria. . .



LOOCV

I We write a statistic ŝ based on all data {y} except i as ŝ(−i)

and the data is {y}(−i).
I For a general loss function we can write:

LOOCV = 1
n

n∑
i=1

Loss
(
yi; θ̂|y(−i)

)
I i.e. we evaluate the loss function for each datapoint using the

estimate from the remaining data.
I NB A loss function is something that we choose the

parameters θ to minimise. It can be:
I the MSE,
I the (negative log) likelihood,
I a penalised version of these,
I or any other convenient quantity.



LOOCV for linear models
I For the MSE of a linear model we can write:

LOOCV = 1
n

n∑
i=1

(
yi − ŷ(−i)

i

)2

I It is not particularly straightforward1 to show that:

LOOCV = 1
n

n∑
i=1

(
yi − ŷi

1−Hii

)2

I Where H is a function of X only (see Appendix).
I This is a very important quantity, often called the Studentized

residual
I i.e. the LOOCV can be directly computed from a regression

containing all data:
I “downweighting” low-leverage data
I “upweighting” high-leverage (hard to predict) data.

1Our references avoid proving this, but do discuss the motivation. Proofs are
available but beyond scope.

https://en.wikipedia.org/wiki/Studentized_residual
https://en.wikipedia.org/wiki/Studentized_residual
https://stats.stackexchange.com/questions/164223/proof-of-loocv-formula
https://stats.stackexchange.com/questions/164223/proof-of-loocv-formula


Leave-one-out Cross-Validation

I Leaving out a single datapoint is going to be insufficient unless
the data are independent.

I The real world is rarely completely independent.
I However, there is often a computationally convenient way to

compute LOOCV, and it is still better than leaving nothing out.
It converges to Cp for large n.

I Analogous tricks work for:
I Linear models including Best Linear Unbiased Predictors

(BLUPs)
I Kernel methods
I Nearest neighbour methods
I And others



Asymptotics

I Here are some facts about the asymptotic behaviour of
LOOCV:
I As n→∞, the expected out-of-sample MSE of the model

picked by LOO cross-validation is close to that of the best
model considered.

I As n→∞, if the true model is among those being compared,
LOOCV tends to pick a strictly larger model than the truth.

I LOOCV is not the right tool for choosing the right model.
I It is however an excellent tool for choosing the model with the

best out-of-sample predictive power.
I . . . when the test data come from the same distribution as

the training data!



Implications

I Matrix form is a massive simplification of complex algebra
I It is easy to check that e.g. dimensions make sense
I These vector calculations are repeated in many

machine-learning methods
I The details change but the principle remains
I Linear-Algebra loss minimisation techniques are extremely

important
I They often sit inside a wider argument, e.g. updated

conditional on some other parameters



Reflection

I By the end of the course, you should:
I Be able to define correlation and regression in multivariate

context
I Be able to perform basic calculations using these concepts
I Be able to extend intuition about their application.
I Be able to follow the reasoning in a paper where things get

complicated.
I Matrix algebra is worth reading up on!

I Describe it for example in your assessments’ reflection.



Signposting

I Make sure to look at 02.1-Regression.R
I The mathematics behind Modern Regression is analogous to

the mathematics underpinning scalable Machine Learning. It is
very important.

I For accessible material see Cosma Shalizi’s Modern Regression
Lectures (Lectures 13-14)

I Further reading in chapters 2.3 and 3.2 of The Elements of
Statistical Learning: Data Mining, Inference, and Prediction
(Friedman, Hastie and Tibshirani)

I Next up: 2.2 Statistical Testing

http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/
http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf


Appendix: The Hat Matrix

I There is an important and response independent quantity
hidden in the prediction:

H = X(XT X)−1XT

I The fitted values are:

ŷ = Xβ̂ = X(XT X)−1XT y = Hy

I H is dimension N ×N
I H “projects” y into the fitted value space ŷ
I Put the “hat” on y



Appendix: Properties of the Hat Matrix

I Influence: ∂ŷi
∂yj

= Hij . So H controls how much a change in
one observation changes the estimates of each other point.

I symmetry: HT = H. So influence is symmetric.
I Idempotency: H2 = H. So the predicted value for any

projected point is the predicted value itself.
I You should read up on these and other vector algebra

properties.



Appendix: Residuals and the Hat Matrix

I The residuals can be written:

e = y−Hy = (I−H)y

I I−H is also symmetric and idempotent, and can also be
interpreted in terms of Influence.

I Because of this,

MSE(β̂) = 1
n

yT (1−H)T (1−H)y = 1
n

yT (1−H)y



Appendix: Expectations

I If the data were generated by our model(!) then they are
described by an RV Y (an n-vector):

Yi = xiβ + εi

I xi is still a vector but not a Random Variable!
I ε is an n× 1 matrix of RVs with mean 0 and covariance σ2

s I.
I From this it is straightforward to show that the fitted values

are unbiased:
E[ŷ] = E[HY] = xβ

I using the properties of Expectations with the symmetry and
idempotency of H.



Appendix: Covariance

I Similarly, it is straightforward to show that

Var[ŷ] = σ2
sH

using the properties of Variances with the symmetry and
idempotency of H.

I In other words, the covariance of the fitted values is determined
entirely by the structure of the covariates, via the Hat matrix.



Appendix: Quantifying Out-of-sample prediction accuracy
I I For the second term in E(e′2

i ) = E(e2
i ) + 2Cov[yi, ŷi],

I We’re now able to compute the covariance between yi and its
prediction ŷi:

Cov[yi, ŷi] = σ2Hii

I The mean out-of-sample prediction error is

E(e′2) = n−1
n∑

i=1
e′i

2 = n−1
n∑

i=1
e2

i + 2n−1tr(H)

I We show in Worksheet 2.2A that tr(H) = σ2p where
p=number of predictors.

I The optimism is defined as 2n−1σ2p.
I The optimism grows with σ2 and p but shrinks with n. It is

used to define the model selection criteria ∆Cp which is
minimised:

∆Cp = MSE1 −MSE2 + 2
n
σ̂2(p1 − p2)


