
Parallel Data with MapReduce and Spark (Part
2, Spark)

Daniel Lawson — University of Bristol

Lecture 11.2 (v2.0.0)

Summary

I In this lecture we cover:
I Spark overview
I Resilient Distributed Datasets
I Spark

Spark

I Like Hadoop, Spark accesses data stored on HDFS via YARN.
It offers many additional features, including:
I Data abstractions, both data table and graph-based;
I Interactive, stateful data representations;
I Interfaces for multiple programming languages (Scala, Python,

Java);
I MLlib, a distributed machine learning toolkit.

I We’ll focus on pyspark.
I This means that we access the features of Spark through

python code.
I It is still necessary to learn the concepts of Spark.
I The code that we write will be python, though the setup of a

Spark session involves very specific commands.

Resilient Distributed Dataset (RDD)

I The core concept of Spark is the RDD.
I RDDs are immutable, distributed collection of elements of

your data that can be stored in memory or disk.
I They should be thought of as a new type of data frame,

e.g. numpy, pandas, RDD.
I Interacting with them is mostly just learning new notation. . .
I With the exception that it operates through:

I transformations, which create a new dataset from an existing
one,

I actions, which return a value.
I As in Hadoop, Spark also makes strong use of key/value pairs.

Transformations

I Transformations 1 are lazy, i.e. they are not evaluated until the
answer is required. This means that they can be efficiently
compiled into complex batch operations.

I Transformations can persist, i.e. be retained in the memory of
each worker node.

I Naive use of transformations can be inefficient, due to data
duplication. This is why they are batched together.

I Behind the scenes, computational graphs are being exploited
to ensure parallelisation and lazy, i.e. efficient evaluation.

I Chaining multiple transformations allow only the RDD at the
start and end of the operation is (explicitly) stored.

1Spark RDD Transformations

https://data-flair.training/blogs/spark-rdd-operations-transformations-actions/

Transformation types

I Transformations can be thought of in two key types.
I Narrow transformations: which operate locally on data

(embarrassingly parallel),
I Wide transformations: which operate on the whole of the

data.

Actions

I Actions are simpler concepts than transformations: they return
a value.

I They return a “value”, i.e. a not an RDD, either to the
interface or to disk.

I They trigger the evaluation of transformations.

RDD Examples

I Which of these are narrow transformations? Which are wide?
Which are actions?
I Collect: Collects data to the interface.
I Map: Map as in MapReduce.
I Intersection: Compute the intersection data in multiple RDDs.
I Distinct: Obtain only distinct elements, discarding duplicates.
I Filter: Remove elements satisfying some criterion.
I First: Get the first few elements.
I Sample: Get a sample of elements.
I Union: Combine two RDDs.
I ReduceByKey: Reduce an RDD by key.
I Take: Get specific elements.
I Join: Merge two RDDs.

RDD Examples - Answers

I Narrow Transformations:
I Map
I Filter
I Sample
I Union

I Wide Transformations:
I Intersection
I Distinct
I ReduceByKey
I Join

I Actions:
I Collect
I First
I Take

Pyspark

I Interacting with RDDs requires learning the new schema
associated with them.

I Apart from interacting with RDDs, pyspark can use standard
python functions to perform calculations.

I This means that you can use standard “boiler plate” RDD
manipulation (copied from the internet),

I And write your own dedicated analysis in a familiar language.

The Spark Context

I Spark is really a framework running in Java, by which
compute processes communicate.

I On the head machine (“Local”) you create a SparkContext
instance, which sets up Spark Worker instances on (typically
remote) compute nodes.

I These will operate on RDDs seamlessly for you as the user.
I Users can:

I interact with the local file system,
I distribute data via RDDs,
I distribute variables via direct communication,

I All seamlessly, as if the data were stored on their local
instance.

The Spark Context

Passing functions to Spark

def myFunc(s):
words = s.split(" ")
return len(words)

sc = SparkContext(...)
sc.textFile("file.txt").map(myFunc)

Sharing data across nodes

broadcastVar = sc.broadcast([1, 2, 3])
broadcastVar.value
[1, 2, 3]

I Any communication that can occur via RDDs should do so, as
this is computationally efficient.

I However, Spark supports communication between nodes in
a number of ways.
I One is the broadcast, which shares results with all other nodes.

I This is a way to share common information.

Important transformations

I See the Spark RDD guide for many more transformations:
I Map/Reduce:

I map: as we know from map/reduce.
I reduceByKey: as we know from map/reduce, but with flexible

key specification.
I Database:

I join: merge datasets by a key.
I filter: selection of items by feature.
I sortByKey: sorting by key, as from map/sort/reduce.
I aggregateByKey: aggregate/combine the data into a new

type.
I Data management:

I sample: random selection of items (as an RDD).
I repartition: reshuffle the data across the nodes.

https://spark.apache.org/docs/latest/rdd-programming-guide.html#basics

Accumulate example

accum = sc.accumulator(0)
sc.parallelize([1, 2, 3, 4]).foreach(lambda x: accum.add(x))
accum.value
10

I As in Python Map/Reduce, Reducing is called many things.
I Just like Python, each does a slightly different thing. One key

distinction is whether the reduce is a transformation, or an
action.

I An Accumulator is the main Action for reducing.
I You can of course run a reduceByKey followed by a collect

to achieve a similar thing.

Summary

I Parallel computing with Spark provides a transparent way to
scale to big data, too large to fit on one machine.

I It requires a paradigm shift to its concept of RDDs, and their
associated transformations and actions.

I There are some simple (enough) commands to create the
required infrastructure.

I Beyond this, everything is vanilla python (with pyspark) or
indeed vanilla R (with SparkR).

References

I Spark RDD guide
I pyspark
I Spark RDD Transformations

https://spark.apache.org/docs/latest/rdd-programming-guide.html#basics
https://www.tutorialspoint.com/pyspark/pyspark_rdd.htm
https://data-flair.training/blogs/spark-rdd-operations-transformations-actions/

