
Parallel Data with MapReduce and Spark (Part
1, Introduction)

Daniel Lawson — University of Bristol

Lecture 12.1 (v2.0.0)

Summary

This block is unassessed, except where the content aligns with other
blocks.
I In this lecture we cover:

I Big Data
I Streaming
I Hadoop Distributed file system (HDFS)
I Hadoop MapReduce

Big Data

I Some key concepts for understanding big data are:
I Volume: The defining feature of big data is that there is lots of

it!
I Velocity: To create lots of data, the data arrive with high

frequency. It must be appropriately dealt with immediately.
I Variety: With unfiltered volume, anything that can be seen,

will be seen. It may also change over time. Systems must be
able to cope with this.

I Veracity: This is the trustworthiness of the data, e.g. does the
data represent the truth?

Frameworks

I There are different computational frameworks for handling
data with each type.
I High Velocity data is dealt with using streaming computation.
I High Volume data is stored using a distributed file system.

I The underlying engineering systems typically interact:
I A streaming decision is made about whether to store the data,

and any immediate decisions;
I The distributed file system allows retrospective, costly

analysis or machine learning.
I Variety and Veracity are dealt with at the choice-of-algorithm

stage, and do not impose engineering constraints.

Streaming Context

I Streaming is about working with data as it arrives, in real
time.
I High Velocity means that data can’t always be stored.
I Immediate decisions must be made in O(1) time.
I Special algorithms called streaming algorithms are used to

handle this.
I Streaming is jointly an engineering and an algorithms problem.

I There are an entire class of algorithms for working in the
streaming context.

I There are a class of statistical quantities that can be calculated
or approximated in the stream.

I We focus on the data exploration role of big data.

Some streaming algorithms

I High level perspective:
I We want to design an estimator for some quantity of interest.
I We want to have access to the estimator at any given time.
I We require O(1) effort for each incoming data point.
I This requires storing our knowledge in an updatable manner.

I To compute the streaming mean:
I We are used to calulating the mean xn =

∑n
i=1 xi/n;

I This can be re-written as a streaming algorithm as
xn = xn−1 + (xn − xn−1)/n.

I To compute the streaming variance:
I We are used to calculating ŝ2

n =
∑n

i=1(xi − xn)2/(n− 1);
I This can be rewritten as d2

n = d2
n−1 + (xn − xn)(xn − xn−1),

I With ŝ2
n = d2

n/(n− 1),
I This is shown in the Worksheet.

Further streaming algorithms

I Additional algorithms include:
I The “exponential moving average”: xn =

∑n

i=1 wixi∑n

i=1 wi
, where

wi−1 = αwi for some α ∈ (0, 1).
I Streaming has the simple form:

xn = (1− α)xn−1 + α(xn − xn−1).

I A wide class of exponential weighting schemes are possible.
I Streaming clustering e.g. k-means can work in this way.

I Sliding window averages or other statistics.
I Sub-linear time algorithms, most notably Sketching (see

Algorithms for Data Science).

High volume data with HDFS

I When there is so much data that it can’t all be stored in one
location, a distributed file storage is required to quickly
query it.
I By placing compute with storage, filtering and other operations

can be applied rapidly at scale.
I The Hadoop Distributed File System (HDFS) has become

an industry standard because:
I It is fault tolerant,
I It was the first industry standard to be open-sourced,
I It has remained supported and developed,
I It is integral to several key tools.

HDFS architecture

I HDFS uses:
I A Namenode, which keeps track of where the data are. It is

typically run on a dedicated node.
I Many Datanodes, which each keep track of numerous data

blocks (typically millions). Each datablock is tracked on several
datanodes (typically 2-5).

I Why this complexity? Because at scale, devices fail all the
time.
I The data are duplicated so that the probability of all

duplicates of data becoming corrupted is low.
I Each copy is also processed, meaning that compute failures

are also tolerated.

HDFS architecture

HDFS implementation

I HDFS is implemented in Java.
I It provides a virtual filesystem interface that treats the entire

set of data blocks as if they were on a regular filesystem.
I Data blocks are simply regular files and can be read in the

regular way.
I Input and output are by default structured around blocks (as

medium sized files, several Mb) in a single virtual directory.

Hadoop

I Apache Hadoop is an open-source implementation of
Map/Reduce optimised for distributed data.

I Using Nm input data blocks and Nr reducers, Hadoop
performs for following stages of computation:
1. A Map which produces exactly one file Mout for each input file

Min (Nm in total). This is run in parallel by the host of the
data block.

2. A Sort which ensures that each key appears in exactly one file
Rin (Nr in total). This is a distributed sort operation, which
places the output into the pre-allocated memory of the hosts of
the reduce block.

3. A Reduce which produces exactly one output file Rout per
input Rin (Nr in total). This is again performed in parallel.

I Because data are distributed, it may be that some hosts are
busier than others. Each stage can be completed when just one
copy of the processing has completed.

https://hadoop.apache.org/

Hadoop

Practical concerns

I Unless you want to code in Java, you want to use Hadoop
Streaming.

I This is not streaming as discussed above! It is instead:
I An interface to allow any binary to be used as a mapper and

reducer.
I To do this, you need to work with stdin and stdout,
I In which each line is processed independently as a record.
I In bash this is handled by pipes, e.g.
I cat file.txt.gz | gunzip -c: extracts a compressed file

with a pipe, pass this to gunzip as a stream, print to stdout.

Python Streaming Mapper (1)

I Thanks to Edinburgh Hadoop Streaming. . .
#!/usr/bin/python2.7
mapper.py
import sys

def map_function(title):
Split title to fields using the data delimeter
fields = title.strip().split('\t')
Select the required field
primaryTitle = fields[2]
Split primary title by words
for word in primaryTitle.strip().split():

Use a word as a key
yield word, 1

<...>

http://www.inf.ed.ac.uk/teaching/courses/exc/labs/designing_for_streaming.html

Python Streaming Mapper (2)

<...>

for line in sys.stdin:
Call map_function for each line in the input
for key, value in map_function(line):

Emit key-value pairs using '|' as a delimeter
print(key + "|" + str(value))

Python Streaming Reducer (1)

#!/usr/bin/python2.7
reducer.py
import sys

def reduce_function(word, values):
Calculate how many times each word was encountered
return word, sum(values)

prev_key = None
values = []

Python Streaming Reducer (2)
for line in sys.stdin:

key, value = line.strip().split('|')

If key has changed then
finish processing the previous key
if key != prev_key and prev_key is not None:

result_key, result_value = \
reduce_function(prev_key, values)

print(result_key + "|" + str(result_value))
values = []

prev_key = key
values.append(int(value))

Don't forget about the last value!
if prev_key is not None:

result_key, result_value = \
reduce_function(prev_key, values)

print(result_key + "|" + str(result_value))

Resource management

I Resource management is handled by “YARN” (Yet Another
Resource Negotiator) which provides:
I Management of data storage, including data re-duplication,
I Management of CPU access, i.e. job queue,
I “Application management”, i.e. load balancing, monitoring

of the system, automatic rerunning of failed jobs, etc.
I YARN requires separate installation and is typically handled by

a sysadmin.
I We therefore will not be using it. Just know it exists.

Mapping

I Because the data are distributed, mapping requires all
datanodes containing the data to run.

I This can lead to congestion if (required) data are not
balanced.

I There is (a small amount of) flexibility if duplicates are
ignored, and only one instance of each block is initially
analysed.

Sorting

I Sorting is not a trivial thing:
I sorting on the correct key is an integral part of the algorithm.
I e.g. counting the key “IP” is different to counting the key

“IP-PORT”.
I However, you rarely need to worry about the algorithm used

to perform the sorting.
I Multiple algorithms are provided.
I Sorting is typically done via hashing into reducer input blocks.
I It can be costly (in terms of network bandwidth) if a lot of data

made it through to the reduce.
I All nodes involved in Mapping and Reducing are required for

sorting.
I Whilst it is straightforward to ensure that keys are evenly

balanced across nodes, the number of values may not be.

Reducing

I The parallelism of reducing is chosen by the user.
I By design, Reducers cannot share information across keys. So

they should be linear in the amount of data if:
I the amount of data per key is O(1), or
I the reducers are O(1) within a key.

I Good Map/Reduce design is needed to ensure that one of
these conditions hold!

Pseudo-code

I You need to specify the map function, the reduce function,
and the associated keys.
I Sorting is assumed and is done on the reducer key.
I Therefore there is no difference with regular Map/Reduce

algorithms.
I An alternative way to describe the Map-Reduce mean

algorithm from Block 10 is:
I class Mapper maps (key = k0, v) to

(key = k, (count = 1, value = v))
I where k = k0

I class Reducer reduces (k, (count, value)) to
(k, (count = c, value = v))
I where c =

∑
i:key=k ci and v =

∑
i:key=k vi

I Postprocess: Return mean =
∑K

k=1 vk∑K

k=1 ck

Hadoop limitations

I Hadoop is efficient for Map + Sort + Reduce.
I It supports complex manipulations in Java, or arbitrary

languages through “Hadoop Streaming” (which we will use).
I There are ways to be more efficient, e.g. reduce each map

output before sort.
I It is slow for iterative calculations because all content is written

to/from disk.
I It is also stateless between iterations (though additional files

can be provided as reference data).
I It is probably not going to be what you use, unless you have a

legacy application.

References

I General parallel algorithms:
I Streaming and Sketching
I Parallel algorithms for dense matrix multiplication

I Map Reduce
I Apache Hadoop
I Gentle introduction to MapReduce
I A Q&A
I Lecture@poznan
I Basic MapReduce Algorithms Design
I Tutorialspoint Mapreduce
I Hadoop for Streaming applications

https://gist.github.com/debasishg/8172796
https://cse.buffalo.edu/faculty/miller/Courses/CSE633/Ortega-Fall-2012-CSE633.pdf
https://hadoop.apache.org/
http://had00b.blogspot.com/2013/08/mapreduce-gentle-introduction.html
http://meri-stuff.blogspot.com/2011/10/mapreduce-questions-and-answers.html
http://www.cs.put.poznan.pl/kdembczynski/lectures/mmds/lectures/mapreduce-I.pdf
http://www.dcs.bbk.ac.uk/~dell/teaching/cc/book/ditp/ditp_ch3.pdf
https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm
http://www.inf.ed.ac.uk/teaching/courses/exc/labs/designing_for_streaming.html

