Ensemble learning

Daniel Lawson University of Bristol

Lecture 05.2 (v2.0.0)

Signposting

» In 05.1 we introduced key classification methods including:
» |ogistic Regression,
» Linear Discriminant Analysis,
» Support Vector Machines
» Other core methods based on trees and forests and in Block 06.
» This lecture is not about specific methods, but how they can
be combined using ensemble learning (also called
meta-methods).

Questions

» If we have two good models, can we combine them into a
better model?

> If we have many bad models, can they be combined into a
good model?

» Can we apply cross-validation and other tricks to improve
performance?

Theory and Practice

» All of the practical work is done in the Workshop.

» Activity 1 of the Workshop is about making a standardized
interface for classifiers.

» This is an essential first step for using classifiers as building
blocks for more complex operations.

» |t tends to be where the Python Package SciKit Learn shines
over R, though there are still inconsistencies

Broad approaches to combining learners

» The goal is “Meta Learning”, i.e. combining multiple “learners”
» learner = machine learning algorithms that consume data and
make predictions
> generalisation of a classifier
» There are two main approaches:
» Parallel approaches:
» Run independently
» Exploits independence structure between learners
» Sequential approaches:
» Run dependently
» Exploits dependence structure between learners
» i.e. focus on what the previous set of learners are bad at

Core topics

> Bagging
» Boosting
> Stacking

Bagging

» The algorithm for bagging is straightforward - simply taking
the average of bootstrapped learners
» In parallel, B times:

» Form data sample {X};, e.g. by sampling with replacement, or
leaving out a random subset of data
» Learn a classifier fy(z)

» Output: A “bagged” classifier f(z) = % Yoo fm(x)

Bagging comments

» Bagging reduces overfitting to the data, and therefore works
well on complex classifiers
» Same rules for resampling apply as in statistics: e.g. it works
well when you respect the correlation structure
» In theory under certain assumptions, the distribution of
bagged learners give a distribution on:
» “what | could have seen if | obtained new data”
» From the same distribution | got my data

» Usually little reason not to try it in practice

Boosting

» The general idea of Boosting is:
» Build a classifier, predict the data
» Treat the residuals as “new data”

> Repeat
» Boosting sounds like it should work for arbitrary classifiers, but

because of the iterative nature it is applied to single classifiers.
» There are many boosting algorithms, amongst which are:

> Majority vote (Early and weak)?
> Adaboost? (Adaptive boosting - first game-changer)
> xgboost® (exploits sparsity and gradients, current Kaggle

winner)

!Kearns M and Valiant L (1989). Symp. Theor. Comp. ACM. 21: 433-444

2Freund and Schapire in 1996
3Chen T and Carlos G (2016) KDD 2016.

Boosted feature splitter

> A very simple way to use boosting is to allow classifiers only
from single features:
> Initialise weights of each data sample (uniformly)
» For T iterations:
» Normalise weights
» Train a classifier on every feature individually
» Choose the best classifier, i.e. feature
» Update the data weights by upweighting correct decisions and
downweighting wrong decisions
» The boosted classifier uses a weighted sum of the selected
classifiers

Adaboost

» Given: N data (z1,%1),...,(xN,yn);zi € X,y; € {—1,1}
» Set data weights Dy—1(n) =1/N. Fort=1---T:

>
>

>

>
>

Train M “weak” classifiers h:(z:) : X — {—1,1} e H
With weighted prediction error

Emt = Yogy Do) (s () —) /2

Choose the best classifier hy = argmin,, €, (hmt) with error €
Evaluate oy = log([1 — €]/€:)

Update the weights:

Dy (i) exp (e Z(y; # he(z:)))
Zy

D11 (d) =

» Where Z; re-normalises weights D, to sum to 1.

» Output: Boosted classifier:

M
H(x) = sign (Z Hmhm(x)>
m=1

Boosting comments

» o grows (towards infinity) as e shrinks (towards zero)

» The weighting process is chosen to ensure that the sign
operation ensures correct classification

» Boosting is computed as a “decision tree” describing which
classifier to use

» But outputs a mixture solution!

» All information about previous decisions is encoded into the
weights

» When there is no residual error left for a data point, its weight
is set to zero

» h can be thought of as “features” and H = {h(z)} can be
large or infinite.

» Implementations in practice usually restrict weak classifiers h to
a single, simple class (e.g. decision tree, perceptron)

» Weak classifiers are often generated by subsetting features,
e.g. one at a time

Stacking

» Stacking is a different way to combine multiple weak learners.
It is more appropriate to combining “good classifiers” to make
a meta-classifier.

» In theory a stacked classifier will always outperform its
constituents if implemented appropriately*.

» Cross-validation and asymptotics are required for this guarantee
but in practice many approaches work.

*van der Laan, M, Polley E, Hubbard A, “Super Learner” (2007) Statistical
Applications in Genetics and Molecular Biology, Volume 6.

Super learner

> Set up the ensemble:

» Specify L base classifiers.
» Specify a metalearning algorithm.
» Train the ensemble:

» Train the L base algorithms on the N training data. Use k-fold
cross-validation for these learners.

» For the N x L matrix of predictions. Form the “level one” data
with this matrix and the raw data.

» Train the metalearning algorithm on the “level one” data.

» Predict on new data:

» Generate predictions from the base classifiers.
» Feed those predictions into the meta-learner to generate the
ensemble prediction.

More Stacking

> Related approaches:
» Run any number of classification algorithms
» Use their predictions as features
» Use the data in addition to the predictions
> Pass this new feature set to any classification algorithm
» In practice, the best algorithm will be the one that generalises
best in the test dataset. Common techniques:
» Majority vote: use the prediction that most classifiers choose
» Regularisation
» Boosting-like prediction combination

Wrapup

» Key to high prediction accuracy are:
» Complexity: Non-linearity helps dramatically
» Bias control: Don't overfit

» Meta-learning: Boosting and stacking are essential for the
final few percent.

Signposting

P> Next Block: Random Forests and decision trees and more
practice using classification.
P> Next Lecture: The workshop Lecture going over Bagging,
Stacking and Boosting in practice.
» References:
» Ensemble learning in general:
>

> , @ Commercial Al Company
focussing on Deployable Al

>

>

Statistical Applications in Genetics and
Molecular Biology, Volume 6.

https://blog.statsbot.co/ensemble-learning-d1dcd548e936
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html
https://stats.stackexchange.com/questions/18891/bagging-boosting-and-stacking-in-machine-learning
https://pubmed.ncbi.nlm.nih.gov/17910531/
https://pubmed.ncbi.nlm.nih.gov/17910531/

Signposting (2)

» More References:

» Boosting:
>
Freund and Schapire (1996).
> , Rob Schapire, Empirical Inference (2013)
pp 37-52.
| 2

> , a blog post about Didrik Nilsen's paper

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.6252&rep=rep1&type=pdf
http://rob.schapire.net/papers/explaining-adaboost.pdf
https://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf
https://towardsdatascience.com/boosting-algorithm-adaboost-b6737a9ee60c
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2433761/16128_FULLTEXT.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2433761/16128_FULLTEXT.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2433761/16128_FULLTEXT.pdf

