
Ensemble learning

Daniel Lawson University of Bristol

Lecture 05.2 (v2.0.0)



Signposting

I In 05.1 we introduced key classification methods including:
I Logistic Regression,
I Linear Discriminant Analysis,
I Support Vector Machines

I Other core methods based on trees and forests and in Block 06.
I This lecture is not about specific methods, but how they can

be combined using ensemble learning (also called
meta-methods).



Questions

I If we have two good models, can we combine them into a
better model?

I If we have many bad models, can they be combined into a
good model?

I Can we apply cross-validation and other tricks to improve
performance?



Theory and Practice

I All of the practical work is done in the Workshop.
I Activity 1 of the Workshop is about making a standardized

interface for classifiers.
I This is an essential first step for using classifiers as building

blocks for more complex operations.
I It tends to be where the Python Package SciKit Learn shines

over R, though there are still inconsistencies



Broad approaches to combining learners

I The goal is “Meta Learning”, i.e. combining multiple “learners”
I learner = machine learning algorithms that consume data and

make predictions
I generalisation of a classifier

I There are two main approaches:
I Parallel approaches:

I Run independently
I Exploits independence structure between learners

I Sequential approaches:
I Run dependently
I Exploits dependence structure between learners
I i.e. focus on what the previous set of learners are bad at



Core topics

I Bagging
I Boosting
I Stacking



Bagging

I The algorithm for bagging is straightforward - simply taking
the average of bootstrapped learners

I In parallel, B times:
I Form data sample {X}b, e.g. by sampling with replacement, or

leaving out a random subset of data
I Learn a classifier fb(x)

I Output: A “bagged” classifier f(x) = 1
B

∑
b=1 fm(x)



Bagging comments

I Bagging reduces overfitting to the data, and therefore works
well on complex classifiers

I Same rules for resampling apply as in statistics: e.g. it works
well when you respect the correlation structure

I In theory under certain assumptions, the distribution of
bagged learners give a distribution on:
I “what I could have seen if I obtained new data”
I From the same distribution I got my data

I Usually little reason not to try it in practice



Boosting

I The general idea of Boosting is:
I Build a classifier, predict the data
I Treat the residuals as “new data”
I Repeat

I Boosting sounds like it should work for arbitrary classifiers, but
because of the iterative nature it is applied to single classifiers.

I There are many boosting algorithms, amongst which are:
I Majority vote (Early and weak)1

I Adaboost2 (Adaptive boosting - first game-changer)
I xgboost3 (exploits sparsity and gradients, current Kaggle

winner)

1Kearns M and Valiant L (1989). Symp. Theor. Comp. ACM. 21: 433-444
2Freund and Schapire in 1996
3Chen T and Carlos G (2016) KDD 2016.



Boosted feature splitter

I A very simple way to use boosting is to allow classifiers only
from single features:

I Initialise weights of each data sample (uniformly)
I For T iterations:

I Normalise weights
I Train a classifier on every feature individually
I Choose the best classifier, i.e. feature
I Update the data weights by upweighting correct decisions and

downweighting wrong decisions
I The boosted classifier uses a weighted sum of the selected

classifiers



Adaboost

I Given: N data (x1, y1), . . . , (xN , yN );xi ∈ X , yi ∈ {−1, 1}
I Set data weights Dt=1(n) = 1/N . For t = 1 · · ·T :

I Train M “weak” classifiers hmt(xt) : X → {−1, 1} ∈ H
I With weighted prediction error

εmt =
∑N

i=1 Dt(i)(hmt(xi)− yi)/2
I Choose the best classifier ht = argminmεmt(hmt) with error εt
I Evaluate αt = log([1− εt]/εt)
I Update the weights:

Dt+1(i) = Dt(i) exp (αtI(yi 6= ht(xi)))
Zt

I Where Zt re-normalises weights Dt+1 to sum to 1.
I Output: Boosted classifier:

H(x) = sign
(

M∑
m=1

θmhm(x)
)



Boosting comments

I α grows (towards infinity) as ε shrinks (towards zero)
I The weighting process is chosen to ensure that the sign

operation ensures correct classification
I Boosting is computed as a “decision tree” describing which

classifier to use
I But outputs a mixture solution!
I All information about previous decisions is encoded into the

weights
I When there is no residual error left for a data point, its weight

is set to zero
I h can be thought of as “features” and H = {h(x)} can be

large or infinite.
I Implementations in practice usually restrict weak classifiers h to

a single, simple class (e.g. decision tree, perceptron)
I Weak classifiers are often generated by subsetting features,

e.g. one at a time



Stacking

I Stacking is a different way to combine multiple weak learners.
It is more appropriate to combining “good classifiers” to make
a meta-classifier.

I In theory a stacked classifier will always outperform its
constituents if implemented appropriately4.
I Cross-validation and asymptotics are required for this guarantee

but in practice many approaches work.

4van der Laan, M, Polley E, Hubbard A, “Super Learner” (2007) Statistical
Applications in Genetics and Molecular Biology, Volume 6.



Super learner

I Set up the ensemble:
I Specify L base classifiers.
I Specify a metalearning algorithm.

I Train the ensemble:
I Train the L base algorithms on the N training data. Use k-fold

cross-validation for these learners.
I For the N × L matrix of predictions. Form the “level one” data

with this matrix and the raw data.
I Train the metalearning algorithm on the “level one” data.

I Predict on new data:
I Generate predictions from the base classifiers.
I Feed those predictions into the meta-learner to generate the

ensemble prediction.



More Stacking

I Related approaches:
I Run any number of classification algorithms
I Use their predictions as features
I Use the data in addition to the predictions

I Pass this new feature set to any classification algorithm
I In practice, the best algorithm will be the one that generalises

best in the test dataset. Common techniques:
I Majority vote: use the prediction that most classifiers choose
I Regularisation
I Boosting-like prediction combination



Wrapup

I Key to high prediction accuracy are:
I Complexity: Non-linearity helps dramatically
I Bias control: Don’t overfit
I Meta-learning: Boosting and stacking are essential for the

final few percent.



Signposting

I Next Block: Random Forests and decision trees and more
practice using classification.

I Next Lecture: The workshop Lecture going over Bagging,
Stacking and Boosting in practice.

I References:
I Ensemble learning in general:

I Vadim Smolyakov, MIT: ML-perspective on Ensemble Methods
I Stacked Ensembles by H2O, a Commercial AI Company

focussing on Deployable AI
I StackExchange: Stacking vs Bagging vs Boosting
I Super Learners: van der Laan, M, Polley E, Hubbard A, “Super

Learner” (2007) Statistical Applications in Genetics and
Molecular Biology, Volume 6.

https://blog.statsbot.co/ensemble-learning-d1dcd548e936
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html
https://stats.stackexchange.com/questions/18891/bagging-boosting-and-stacking-in-machine-learning
https://pubmed.ncbi.nlm.nih.gov/17910531/
https://pubmed.ncbi.nlm.nih.gov/17910531/


Signposting (2)

I More References:
I Boosting:

I AdaBoost paper: Experiments with a New Boosting Algorithm
Freund and Schapire (1996).

I Explaining AdaBoost, Rob Schapire, Empirical Inference (2013)
pp 37-52.

I xgboost Chen T and Carlos G (2016) KDD 2016.
I xgboost explained, a blog post about Didrik Nilsen’s paper Tree

Boosting With XGBoost: Why Does XGBoost Win “Every”
Machine Learning Competition?

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.6252&rep=rep1&type=pdf
http://rob.schapire.net/papers/explaining-adaboost.pdf
https://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf
https://towardsdatascience.com/boosting-algorithm-adaboost-b6737a9ee60c
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2433761/16128_FULLTEXT.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2433761/16128_FULLTEXT.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2433761/16128_FULLTEXT.pdf

