
Introduction to Classification

Daniel Lawson University of Bristol

Lecture 05.1 (v2.0.0)

Signposting

I We have wrapped up classic statistics with a discussion on
non-parametrics, kernels, and a practical on missing data and
outliers.

I The remainder of the course changes the focus towards
machine-learning - especially the background of the key tools
that are used in practice.

I It is important to emphasise that classification is statistics,
though we use the parlance of machine learning.
I Most of machine learning is also modern statistics.
I The main distinction is about use: whether we use the results

only for prediction, or for understanding.
I Which ultimately is no distinction at all. . .

Questions

I Do we need a “baseline model”?
I How can we compare model performance?
I What is a “good classifier”?

Types of machine learning

I Unsupervised: no labels. For example,
I Clustering
I Dimensionality reduction
I Smoothing

I Supervised: exploits labels. For example,
I Classification
I Regression

I Other types:
I Semi-supervised: some labels are available
I Active: can choose which labels to obtain
I Reinforcement: reward based. explore vs exploit?
I etc.

Classification
I Machine Learning classification is about how to make good

predictions of classes based on previous experience of how
features relate to classes.

Examples of classification

I Spam filtering (spam/not spam)
I Face detection (image classification)
I Speech recognition
I Handwriting recognition
I Turing test . . . though that is human, not machine!
I Classification is broadly the “detection, recognition, recall of

prior experience”.

Some Important Classifiers

I Logistic Regression (Block 2 and 5)
I K-Nearest Neighbours (Block 4 and 5)
I Linear Discriminant Analysis (Block 5)
I Support Vector Machines (Block 5)
I Decision Trees (Block 6)
I CART: Classification and Regression Trees (Block 6)
I Random Forests (Block 6)
I Neural Networks (Block 7)
I Naive Bayes (Block 8)

Classification

From Regression to Classification

I In Week 3 we discussed linear regression, i.e. obtaining
solutions to:

yi = ~xi · β + ei

I in scalar form, where we have p′ covariates and have
~xi = (1, x1,i, · · · , xp′,i), so ~xi and β are both vectors of length
p = p′ + 1, and ei are the residuals whose squared-sum is
minimised.

I Logistic regression instead solves for the probability that a
binary outcome y is 1:

logit(p(yi)) = ln
(

p(yi)
1− p(yi)

)
= ~xi · β + ei

I The model then assumes yi ∼ Bern(p(yi)). The prediction is
the log-odds ratio, with values > 0 predicting a 1 and values
< 0 predicting a 0.

Logistic Regression fitting

I Logistic regression is an example of a generalised linear
model or GLM.

I In general these cannot be directly solved with Linear Algebra.
Options include:

I Maximum likelihood estimation:
I A numerical procedure can be used to maximise the likelihood

in terms of the parameters β, and σ the variance of e.
I Iteratively Reweighted least squares (IRLS):

I The non-linearity can be adopted into weights, and a linear
algebra solution reached.

I Then the weights are updated, and the procedure iterated.
I Co-estimation tends to be relatively computationally costly

(higher dimensional space) but to have better estimation
properties.

Logistic Regression example

Classification Performance

I We can always compute training and test dataset accuracy.
I However, we should only ever compare performance on test

data, to prevent over-fitting.
I Classifiers are understood through their Confusion Matrix,

that is a comparison between:
I Ground truth class, and
I Predicted classes.

I For binary classes, we summarise using
(true/false)(positive/negative) outcomes.

I Binary classification is particularly convenient as most
classifiers can provide scores rather than class predictions.
I Scores are ordered. So we can choose a threshold to control

the total proportion of positive predictions.
I This provides a relationship between Positive Claims and

True Positives.

Classification Performance

. Y = 1 Y = 0 Condition

Ŷ = 1 TP FP Prediction positive
Ŷ = 0 FN TN Prediction negative
Claim Truth positive Truth Negative .

Classification Performance Representations

I There are many ways to represent performance
I The Receiver-Operator-Curve (ROC) is the most popular,

as it holds regardless of the true distribution of the data.
I X-axis: False Positive Rate (FPR) = P (Ŷ = 1|Y = 0)
I Y-axis: True Positive Rate (TPR) = P (Ŷ = 1|Y = 1)
I The Area Under the Curve (AUC) is a measure of Accuracy

(0.5=guessing, 1=perfect).
I We need to care about the region of the ROC curve that

matters.
I The Precision-Recall curve is appropriate when we care

specifically about positive cases:
I X-axis: Precision = P (Y = 1|Ŷ = 1)
I Y-axis: Recall=TPR = P (Ŷ = 1|Y = 1)

Some important properties

I Some nice things1 can be said about ROC and PR curves:
I Dominance:

I If one curve dominates (is always above) another in ROC, it
dominates in PR

I and vice-versa
I ROC curves can be linearly interpolated

I This is “flipping a coin” to access classifiers in-between
I PR curves have a slightly more complex relationship but the

same principle can be applied
I Integrating both scores leads to performance metric that can

be optimized

1Davis and Goadrich, “The Relationship Between Precision-Recall and ROC
Curves”, ICML 2006.

https://www.biostat.wisc.edu/~page/rocpr.pdf
https://www.biostat.wisc.edu/~page/rocpr.pdf

ROC/PR Curve Example

Metrics for Classification

I Accuracy (Proportion of samples classified correctly) is a
terrible metric if classes are unequal

I TPR at a given FPR is more flexible
I AUC characterises the whole ROC curve
I Area Under Precision-Recall Curve (AUPRC?) is also a thing

people advocate for
I None are “right”, we have to define the inference task
I Any of these and more are often optimized

I If we optimise a parameter or perform model comparison based
on test data, we need additional test data to test the
meta-algorithm!

Classification

K-Nearest Neighbour classification

I In Block 4, we introduced K-NN for density estimation.
I We defined some choices of distance function
I We obtained the K nearest neighbours of points in R

I Armed with those neighbours, a classifier can be implemented
by using majority vote of the labels of all k neighbours.

I A naive implementation scales poorly with N , but an
approximate lookup can control complexity.

I See also: Condensed nearest neighbor2 approaches to reduce
the amount of data required at the classification stage.

2Hart P, The Condensed Nearest Neighbor Rule. IEEE Transactions on
Information Theory 18 (1968) 515-516. doi: 10.1109/TIT.1968.1054155

K-Nearest Neighbour example

Linear Discriminant Analysis

I Developed in 1936 by R. A. Fisher3 and extended to the
current multi-class form in 19484.

I The goal is to project a high dimensional space into K
dimensions, maintaining (linear) classification ability.

I Prediction benefit comes only from reducing overfitting
I Strong relationship with PCA, often used in tandem (PCA

then LDA)
I Assumes that each class k has a different mean µk and a

shared covariance matrix Σ
I Kernel Discriminant Analysis exists5

3Fisher R, “The Use of Multiple Measurements in Taxonomic Problems”
(1936) Annals of eugenics (!), now “Annals of Human Genetics”

4Rao C, “Multiple Discriminant Analysis” (1948) JRSSB
5Mika, S et al “Fisher discriminant analysis with kernels” (1999) NIPS IX:

41-48

LDA algorithm
1. Compute the mean location µk for each class k and the overall

mean µ, as well as the assignment sets Dk.
2. Compute the within-class scatter matrix SW :
SW =

∑K
k=1 Sk where

Sk =
∑

i∈Dk

(~x− ~µk) (~x− ~µk)T

3. Compute the between-class scatter matrix SB:

SB =
K∑

k=1
ni (~µk − ~µ) (~µk − ~µ)T

4. Solve for the eigenvalues λk and eigenvectors vk of S−1
W SB

5. Choose a dimension threshold K∗, either using the same
methods as for PCA, or cross-validation

6. Predict using µk . . .

LDA prediction

I Class prediction can use any information in the LDA data
summary. Options include:
I Nearest cluster
I Likelihood: Pr(~x|yk = c) = Normal (µk,Σ)
I Posterior: Pr(yk = c|~x) ∝ Pr(~x|yk = c)p(yk = c);

i.e. reweight classes according to their frequency

LDA example

Towards Support Vector Machines

I LDA uses all the points for classification, which makes it slow
I It is obviously linear (without using a kernel)
I Moving towards SVM, we:

I Can exploit the kernel-trick to make a non-linear decision
boundary without explicit mapping

I Switch focus from group means to making the largest group
separation

I If we only want to discriminate classes, we can only use a
subset of the data, the support vectors, for the decision

I This makes the method:
I robust to distributional assumptions
I non-generative

Support Vector Machine overview

I Find the maximum margin hyperplane separating the classes
closest points

I Allow soft margins: misclassified points are down-weighted
I Nonlinearity: express distances as inner products, allowing

non-linearities via the Kernel trick
I Algorithm: finding the hyperplane is a “quadratic optimisation

problem”.

SVM illustration: solution space

Planar geometry
I The data are ~x ∈ D containing N examples
I The labels are yi ∈ (−1, 1)
I A hyperplane is defined via:

I ~w, the coordinates of the plane
I ~w0, a point on the plane chosen such that ~w0 is perpendicular

to ~w:
~w · (~x− ~w0) = ~w · ~x+ b = 0

SVM margins

I The distance of a point to the line is the residual after the
point is projected onto the line:

d~w(~x) = ~n · (~x− ~x′) = |~w · ~x+ b|
|~w|

I For a given hyperplane, the minimum margin is

M~w = argminx∈Dd~w(~x)

I The maximum margin hyperplane is therefore:

argmax ~wargminx∈Dd~w(~x)

SVM illustration: SVM solution

Computing the margins

I This is a classic Quadratic Programming problem6

I Broadly:
I quadratic penalty: distance to the plane ∝ squared norm of the

hyperplane vector 1
2 |~w|

2

I linear inequalities: none of the data are closer than M~w. So
∀i : yi(~w · ~x+ b) ≥ 1

I and pass these to a standard QP solver
I A computational trick: only evaluate the points on the margins

6For this course, you need to know what QP can do for you. You don’t need
to know how it works.

SVM problem

Imperfect classification with SVM

I To account for data the wrong side of the margins, the
penalty is changed to:

1
2 |~w|

2 + C
N∑

i=1
εi

I where εi is the “distance” needed to move the point to the
correct decision boundary, i.e.

~w · ~xi + b ≥ 1− εi if : yi = 1 (1)
~w · ~xi + b ≤ −1 + εi if : yi = −1 (2)

I and εi = 0 if already inside it, so also requiring the constraint
εi ≥ 0

SVM example

kernel SVM example

Wrapup

I Logistic regression is the go-to straw man classifier in
machine learning:
I It is easy to implement
I It is a natural predictive model
I It does reasonably well in many settings

I k-NN is the interpolation method to beat
I Linear Discriminant Analysis is also widely used:

I It is easy to bolt onto PCA
I Clusters are more interpretable than logistic regression

I SVMs remain an important competitor at the bleeding edge:
I A hyperplane is a natural discriminatory model
I Feature engineering can allow complex non-linear models
I Low-complexity classifier once training is performed

I Neighbourhoods are always competitive, but are costly at
test time

Reflection

I Why is LDA used with PCA, and not instead-of?
I How would you imagine an approximate lookup for k-NN would

work?
I How sparse should the SVM solution be? In what sense is SVM

efficient? When would it be cutting edge?
I By the end of the course, you should:

I Be able to navigate the many approaches to classification
I Understand and be able to explain the high level function of:
I Logistic Regression, Nearest Neighbour classification, LDA,

SVMs

References:
I References for classification basics:

I Stack Exchange Discussion of ROC vs PR curves.
I Davis and Goadrich, “The Relationship Between

Precision-Recall and ROC Curves”, ICML 2006.
I Rob Schapire’s ML Classification features a Batman Example. . .
I Chapter 4 of The Elements of Statistical Learning: Data Mining,

Inference, and Prediction (Friedman, Hastie and Tibshirani).
I k-Nearest Neighbours:

I Chapter 13.3 of The Elements of Statistical Learning: Data
Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

I Linear Discriminant Analysis:
I Sebastian Raschka’s PCA vs LDA article with Python Examples
I Chapter 4.3 of The Elements of Statistical Learning: Data

Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

I SVMs:
I Jason Weston’s SVMs tutorial
I e1071 Package for SVMs in R
I Chapter 12 of The Elements of Statistical Learning: Data

Mining, Inference, and Prediction (Friedman, Hastie and
Tibshirani).

https://stats.stackexchange.com/questions/7207/roc-vs-precision-and-recall-curves
https://www.biostat.wisc.edu/~page/rocpr.pdf
https://www.biostat.wisc.edu/~page/rocpr.pdf
https://www.cs.princeton.edu/~schapire/talks/picasso-minicourse.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://sebastianraschka.com/Articles/2014_python_lda.html#principal-component-analysis-vs-linear-discriminant-analysis
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://www.cs.columbia.edu/~kathy/cs4701/documents/jason_svm_tutorial.pdf
ftp://ftp.cse.yzu.edu.tw/CRAN/web/packages/e1071/vignettes/svmdoc.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf

