Introduction to Classification

Daniel Lawson University of Bristol

Lecture 05.1 (v2.0.1)

Chihuahua or muffin?

Signposting

- The remainder of the course changes the focus towards machine-learning - especially the background of the key tools that are used in practice.
- It is important to emphasise that classification is statistics, though we use the parlance of machine learning.
 - Most of machine learning is also modern statistics.
 - The main distinction is about purpose: whether developed for prediction, or for understanding.
- Today is about traditional "baseline models". We discuss bleeding edge ensemble and tree methods next.

Questions

- ► Do we need a "baseline model"?
- How can we compare model performance?
- ▶ What is a "good classifier"?

Types of machine learning

Unsupervised: no labels. For example,

- Clustering
- Dimensionality reduction
- Smoothing
- Supervised: exploits labels. For example,
 - Classification
 - Regression
- Other types:
 - Semi-supervised: some labels are available
 - Active: can choose which labels to obtain
 - Reinforcement: reward based. explore vs exploit?
 - etc.

Classification

Machine Learning classification is about how to make good predictions of classes based on previous experience of how features relate to classes.

Examples of classification

- **Spam** filtering (spam/not spam)
- ► Face detection (image classification)
- Speech recognition
- Handwriting recognition
- Turing test ... though that is human, not machine!
- Classification is broadly the "detection, recognition, recall of prior experience".

Some Important Classifiers

- Logistic Regression (Block 2 and 5)
- K-Nearest Neighbours (Block 4 and 5)
- Linear Discriminant Analysis (Block 5)
- Support Vector Machines (Block 5)
- Decision Trees (Block 6)
- CART: Classification and Regression Trees (Block 6)
- Random Forests (Block 6)
- Neural Networks (Block 7)
- Naive Bayes (Block 8)

Classification

x1

From Regression to Classification

In Week 3 we discussed linear regression, i.e. obtaining solutions to:

$$y_i = \vec{x}_i \cdot \beta + e_i$$

 Definitions: scalar form with p' covariates; x_i = (1, x_{1,i}, · · · , x_{p',i}), so x_i and β are vectors of length p = p' + 1; e_i are residuals whose squared-sum is minimised.
Logistic regression estimates the probability that a binary outcome y is 1:

$$\operatorname{logit}(p(y_i)) = \ln\left(\frac{p(y_i)}{1 - p(y_i)}\right) = \vec{x}_i \cdot \beta + e_i$$

▶ with y_i ~ Bern(p(y_i)). The prediction is the log-odds ratio, with values > 0 predicting a 1 and values < 0 predicting a 0.</p>

Logistic Regression fitting

- Logistic regression is an example of a generalised linear model or GLM.
- In general these cannot be directly solved with Linear Algebra. Options include:
- Maximum likelihood estimation:
 - (Numerically) maximise the likelihood in terms of the parameters β, and σ the variance of e.
- Iteratively Reweighted least squares (IRLS):
 - The non-linearity is adopted into weights, and a linear algebra solution reached.
 - ► Then the weights are updated, and the procedure iterated.
- Co-estimation is relatively computationally costly (higher dimensional space) but has better estimation properties.

Logistic Regression example

Classification Performance

- We can always compare performance on test data, to prevent over-fitting.
- Classifiers are understood through their Confusion Matrix, that is a comparison between:
 - Ground truth class, and
 - Predicted classes.
- For binary classes, we summarise using (true/false)(positive/negative) outcomes.
- Binary classification is particularly convenient as most classifiers can provide scores rather than class predictions.
 - Scores are ordered. So we can choose a threshold to control the total proportion of positive predictions.
 - This provides a relationship between Positive Claims and True Positives.

Classification Performance Thresholding

	Y = 1	Y = 0	Condition
$\hat{Y} = 1$	ТР	FP	Prediction positive
$\hat{Y} = 0$	FN	TN	Prediction negative
Claim	Truth positive	Truth Negative	

Classification Performance Representations

- There are many ways to represent performance
- The Receiver-Operator-Curve (ROC) is the most popular, as it holds regardless of the true distribution of the data.
 - X-axis: False Positive Rate (FPR) = $P(\hat{Y} = 1|Y = 0)$
 - Y-axis: True Positive Rate $(TPR) = P(\hat{Y} = 1|Y = 1)$
 - The Area Under the Curve (AUC) is a measure of Accuracy (0.5=guessing, 1=perfect).
 - We need to care about the region of the ROC curve that matters.
- The Precision-Recall curve is appropriate when we care specifically about positive cases:
 - X-axis: Precision = $P(Y = 1 | \hat{Y} = 1)$
 - ▶ Y-axis: Recall=TPR = $P(\hat{Y} = 1|Y = 1)$

Some important properties

▶ Some nice things¹ can be said about ROC and PR curves:

Dominance:

- If one curve dominates (is always above) another in ROC, it dominates in PR
- and vice-versa
- ROC curves can be linearly interpolated
 - This is "flipping a coin" to access classifiers in-between
- PR curves have a slightly more complex relationship but the same principle can be applied
- Integrating both scores leads to performance metric that can be optimized

¹Davis and Goadrich, "The Relationship Between Precision-Recall and ROC Curves", ICML 2006.

ROC/PR Curve Example

Metrics for Classification

 Accuracy (Proportion of samples classified correctly) is a terrible metric if classes are unequal

- TPR at a given FPR is more flexible
- AUC characterises the whole ROC curve
- Area Under Precision-Recall Curve (AUPRC?) is also a thing people advocate for
- ▶ None are "right", we have to define the inference task
- Any of these and more are often optimized
 - If we optimise a parameter or perform model comparison based on test data, we need additional test data to test the meta-algorithm!

Classification

x1

K-Nearest Neighbour classification

▶ In Block 4, we introduced K-NN for density estimation.

- We defined some choices of distance function
- We obtained the K nearest neighbours of points in R
- Armed with those neighbours, a classifier can be implemented by using majority vote of the labels of all k neighbours.
- A naive implementation scales poorly with N, but an approximate lookup can control complexity.
- See also: Condensed nearest neighbor² approaches to reduce the amount of data required at the classification stage.

²Hart P, The Condensed Nearest Neighbor Rule. IEEE Transactions on Information Theory 18 (1968) 515-516. doi: 10.1109/TIT.1968.1054155

K-Nearest Neighbour example

Linear Discriminant Analysis

- Developed in 1936 by R. A. Fisher³ and extended to the current multi-class form in 1948⁴.
- The goal is to project a high dimensional space into K dimensions, maintaining (linear) classification ability.
- Prediction benefit comes only from reducing overfitting
- Strong relationship with PCA, often used in tandem (PCA then LDA)
- Assumes that each class k has a different mean μ_k and a shared covariance matrix Σ
- Kernel Discriminant Analysis exists⁵

³Fisher R, "The Use of Multiple Measurements in Taxonomic Problems" (1936) Annals of eugenics (!), now "Annals of Human Genetics" ⁴Rao C, "Multiple Discriminant Analysis" (1948) JRSSB ⁵Mika, S et al "Fisher discriminant analysis with kernels" (1999) NIPS IX: 41-48

LDA algorithm

- 1. Compute the mean location μ_k for each class k and the overall mean μ , as well as the assignment sets D_k .
- 2. Compute the within-class scatter matrix S_W : $S_W = \sum_{k=1}^K S_k$ where

$$S_k = \sum_{i \in D_k} \left(\vec{x} - \vec{\mu}_k \right) \left(\vec{x} - \vec{\mu}_k \right)^T$$

3. Compute the **between-class scatter matrix** S_B :

$$S_B = \sum_{k=1}^{K} n_i \left(\vec{\mu}_k - \vec{\mu} \right) \left(\vec{\mu}_k - \vec{\mu} \right)^T$$

- 4. Solve for the eigenvalues λ_k and eigenvectors v_k of $S_W^{-1}S_B$
- 5. Choose a dimension threshold K^* , either using the same methods as for PCA, or cross-validation
- 6. **Predict** using $\mu_k \ldots$

LDA prediction

- Class prediction can use any information in the LDA data summary. Options include:
 - Nearest cluster
 - Likelihood: $Pr(\vec{x}|y_k = c) = Normal(\mu_k, \Sigma)$
 - **Posterior**: $\Pr(y_k = c | \vec{x}) \propto \Pr(\vec{x} | y_k = c) p(y_k = c);$

i.e. reweight classes according to their frequency

LDA example

Towards Support Vector Machines

- ► LDA uses all the points for classification, which makes it slow
- It is obviously linear (without using a kernel)
- Moving towards SVM, we:
 - Can exploit the kernel-trick to make a non-linear decision boundary without explicit mapping
 - Switch focus from group means to making the largest group separation
 - If we only want to discriminate classes, we can only use a subset of the data, the support vectors, for the decision
- This makes the method:
 - robust to distributional assumptions
 - non-generative

Support Vector Machine overview

- Find the maximum margin hyperplane separating the classes closest points
- Allow soft margins: misclassified points are down-weighted
- Nonlinearity: express distances as inner products, allowing non-linearities via the Kernel trick
- Algorithm: finding the hyperplane is a "quadratic optimisation problem".

SVM illustration: solution space

x1

Planar geometry

- ▶ The data are $\vec{x} \in D$ containing N examples
- The labels are $y_i \in (-1, 1)$
- ► A hyperplane is defined via:
 - \vec{w} , the coordinates of the plane
 - ▶ w₀, a point on the plane chosen such that w₀ is perpendicular to w:

$$\vec{w} \cdot (\vec{x} - \vec{w}_0) = \vec{w} \cdot \vec{x} + b = 0$$

SVM margins

The distance of a point to the line is the residual after the point is projected onto the line:

$$d_{\vec{w}}(\vec{x}) = \vec{n} \cdot (\vec{x} - \vec{x}') = \frac{|\vec{w} \cdot \vec{x} + b|}{|\vec{w}|}$$

For a given hyperplane, the minimum margin is

 $M_{\vec{w}} = \operatorname{argmin}_{x \in D} d_{\vec{w}}(\vec{x})$

The maximum margin hyperplane is therefore:

 $\operatorname{argmax}_{\vec{w}}\operatorname{argmin}_{x\in D} d_{\vec{w}}(\vec{x})$

SVM illustration: SVM solution

x1

Computing the margins

- This is a classic Quadratic Programming problem⁶
- Broadly:
 - quadratic penalty: distance to the plane \propto squared norm of the hyperplane vector $\frac{1}{2} |\vec{w}|^2$
 - ▶ linear inequalities: none of the data are closer than $M_{\vec{w}}$. So $\forall i: y_i(\vec{w} \cdot \vec{x} + b) \ge 1$
- ▶ and pass these to a standard QP solver
- A computational trick: only evaluate the points on the margins

 $^{^{6}}$ For this course, you need to know what QP can do for you. You don't need to know how it works.

SVM problem

x1

Imperfect classification with SVM

To account for data the wrong side of the margins, the penalty is changed to:

$$\frac{1}{2} |\vec{w}|^2 + C \sum_{i=1}^N \epsilon_i$$

▶ where *e_i* is the "distance" needed to move the point to the correct decision boundary, i.e.

$$\vec{w} \cdot \vec{x}_i + b \ge 1 - \epsilon_i \qquad \text{if :} \qquad y_i = 1 \quad (1)$$

$$\vec{w} \cdot \vec{x}_i + b < -1 + \epsilon_i \qquad \text{if :} \qquad y_i = -1 \quad (2)$$

 \blacktriangleright and $\epsilon_i=0$ if already inside it, so also requiring the constraint $\epsilon_i\geq 0$

SVM example

kernel SVM example

Wrapup

These are baseline models

- Logistic regression is the go-to straw man classifier in machine learning:
 - It is a natural predictive model
 - It does surprisingly well in many settings
- Linear Discriminant Analysis is also still used
- SVMs are still popular:
 - A hyperplane is a natural discriminatory model
 - Feature engineering can allow complex non-linear models
- k-NN is the interpolation method to beat
 - Neighbourhoods are always competitive, but are costly at test time

Reflection

- Why is LDA used with PCA, and not instead-of?
- How would you imagine an approximate lookup for k-NN would work?
- How sparse should the SVM solution be? In what sense is SVM efficient? When would it be cutting edge?
- ► By the end of the course, you should:
 - Be able to navigate the many approaches to classification
 - Understand and be able to explain the high level function of:
 - Logistic Regression, Nearest Neighbour classification, LDA, SVMs

References:

► **References** for classification basics:

- Stack Exchange Discussion of ROC vs PR curves.
- Davis and Goadrich, "The Relationship Between Precision-Recall and ROC Curves", ICML 2006.
- Rob Schapire's ML Classification features a Batman Example...
- Chapter 4 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
- k-Nearest Neighbours:
 - Chapter 13.3 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
- Linear Discriminant Analysis:
 - Sebastian Raschka's PCA vs LDA article with Python Examples
 - Chapter 4.3 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
- SVMs:
 - Jason Weston's SVMs tutorial
 - e1071 Package for SVMs in R
 - Chapter 12 of The Elements of Statistical Learning: Data